Difference between revisions of "ApCoCoA-1:BBSGen.Wmat"

From ApCoCoAWiki
(Removing all content from page)
Line 1: Line 1:
<command>
 
<title>BBSGens.Wmat</title>
 
  <short_description>This function computes the weight matrix with respect to the arrow grading. </short_description>
 
<syntax>BBSGens.WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX</syntax>
 
<description>
 
This command computes the degree of the indeterminates from <tt>K[c_{ij}]</tt> with respect to the arrow grading.  The  coloumns  of <ref>BBSGens.Wmat</ref><tt>(OO,BO,N)</tt> give the degrees of <tt>{c_{11},..c_{1Nu},...,c_{MuNu}}</tt> with respect to the arrow grading, where Mu is the number of elements in <tt>OO</tt> and <tt>Nu</tt> is the number of elements from <tt>BO</tt>.
 
  
 
<itemize>
 
  <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
 
  <item>@param <em>BO</em> A list of terms representing the border.</item>
 
<item>@param <em>N</em> The number of elements of the polynomial ring <tt>K[x_1,...x_n]</tt>.</item>
 
  <item>@return Returns the weight matrix with respect to the arrow grading.</item>
 
</itemize>
 
 
<example>
 
Use R::=QQ[x[1..2]];
 
OO:=BB.Box([1,1]);
 
BO:=BB.Border(OO);
 
N:=Len(Indets());
 
----------------------
 
W:=BBSGen.Wmat(OO,BO,N);
 
W;
 
Mat([
 
  [0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1],
 
  [2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0]])
 
</example>
 
  </description>
 
    <type>bbsmingensys</type>
 
<key>Wmat</key>
 
  <key>BBSGen.Wmat</key>
 
  <key>bbsmingensys.Wmat</key>
 
  <wiki-category>Package_bbsmingensys</wiki-category>
 
</command>
 

Revision as of 19:09, 13 February 2012