|
|
Line 1: |
Line 1: |
− | <command>
| |
− | <title>BBSGens.Wmat</title>
| |
− | <short_description>This function computes the weight matrix with respect to the arrow grading. </short_description>
| |
− | <syntax>BBSGens.WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX</syntax>
| |
− | <description>
| |
− | This command computes the degree of the indeterminates from <tt>K[c_{ij}]</tt> with respect to the arrow grading. The coloumns of <ref>BBSGens.Wmat</ref><tt>(OO,BO,N)</tt> give the degrees of <tt>{c_{11},..c_{1Nu},...,c_{MuNu}}</tt> with respect to the arrow grading, where Mu is the number of elements in <tt>OO</tt> and <tt>Nu</tt> is the number of elements from <tt>BO</tt>.
| |
| | | |
− |
| |
− | <itemize>
| |
− | <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
| |
− | <item>@param <em>BO</em> A list of terms representing the border.</item>
| |
− | <item>@param <em>N</em> The number of elements of the polynomial ring <tt>K[x_1,...x_n]</tt>.</item>
| |
− | <item>@return Returns the weight matrix with respect to the arrow grading.</item>
| |
− | </itemize>
| |
− |
| |
− | <example>
| |
− | Use R::=QQ[x[1..2]];
| |
− | OO:=BB.Box([1,1]);
| |
− | BO:=BB.Border(OO);
| |
− | N:=Len(Indets());
| |
− | ----------------------
| |
− | W:=BBSGen.Wmat(OO,BO,N);
| |
− | W;
| |
− | Mat([
| |
− | [0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1],
| |
− | [2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0]])
| |
− | </example>
| |
− | </description>
| |
− | <type>bbsmingensys</type>
| |
− | <key>Wmat</key>
| |
− | <key>BBSGen.Wmat</key>
| |
− | <key>bbsmingensys.Wmat</key>
| |
− | <wiki-category>Package_bbsmingensys</wiki-category>
| |
− | </command>
| |