Difference between revisions of "ApCoCoA-1:BBSGen.Wmat"
From ApCoCoAWiki
(New page: <command> <title>BBSGens.Wmat</title> <short_description>This function computes the weight matrix with respect to the arrow grading. </short_description> <syntax>BBSGens.WMat(OO:LIST,BO...) |
|||
Line 10: | Line 10: | ||
<item>@param <em>OO</em> A list of terms representing an order ideal.</item> | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
<item>@param <em>BO</em> A list of terms representing the border.</item> | <item>@param <em>BO</em> A list of terms representing the border.</item> | ||
− | <item>@param <em>N</em> The number of elements of the | + | <item>@param <em>N</em> The number of elements of the polynomial ring <tt>K[x_1,...x_n]</tt>.</item> |
<item>@return Returns the weight matrix with respect to the arrow grading.</item> | <item>@return Returns the weight matrix with respect to the arrow grading.</item> | ||
</itemize> | </itemize> | ||
Line 20: | Line 20: | ||
N:=Len(Indets()); | N:=Len(Indets()); | ||
---------------------- | ---------------------- | ||
− | W:=Wmat(OO,BO,N); | + | W:=BBSGen.Wmat(OO,BO,N); |
W; | W; | ||
Mat([ | Mat([ | ||
Line 28: | Line 28: | ||
</description> | </description> | ||
<type>bbsmingensys</type> | <type>bbsmingensys</type> | ||
+ | <key>Wmat</key> | ||
+ | <key>BBSGen.Wmat</key> | ||
+ | <key>bbsmingensys.Wmat</key> | ||
<wiki-category>Package_bbsmingensys</wiki-category> | <wiki-category>Package_bbsmingensys</wiki-category> | ||
</command> | </command> |
Revision as of 18:50, 13 February 2012
BBSGens.Wmat
This function computes the weight matrix with respect to the arrow grading.
Syntax
BBSGens.WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX
Description
This command computes the degree of the indeterminates from K[c_{ij}] with respect to the arrow grading. The coloumns of BBSGens.Wmat(OO,BO,N) give the degrees of {c_{11},..c_{1Nu},...,c_{MuNu}} with respect to the arrow grading, where Mu is the number of elements in OO and Nu is the number of elements from BO.
@param OO A list of terms representing an order ideal.
@param BO A list of terms representing the border.
@param N The number of elements of the polynomial ring K[x_1,...x_n].
@return Returns the weight matrix with respect to the arrow grading.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); N:=Len(Indets()); ---------------------- W:=BBSGen.Wmat(OO,BO,N); W; Mat([ [0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1], [2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0]])
<type>bbsmingensys</type>