Difference between revisions of "ApCoCoA-1:Num.SubAVI"
m |
(Remove obsolescent parameters) |
||
Line 4: | Line 4: | ||
<syntax> | <syntax> | ||
Num.SubAVI(Points:MAT, Epsilon:RAT, Basis:LIST):Object | Num.SubAVI(Points:MAT, Epsilon:RAT, Basis:LIST):Object | ||
− | Num.SubAVI(Points:MAT, Epsilon:RAT, Basis:LIST, Delta:RAT, NormalizeType | + | Num.SubAVI(Points:MAT, Epsilon:RAT, Basis:LIST, Delta:RAT, NormalizeType:INT):Object |
</syntax> | </syntax> | ||
<description> | <description> | ||
Line 30: | Line 30: | ||
<item>@param <em>Delta</em> A positive rational number which describes the computing precision. In different steps, it is crucial, if a value is 0 or not. The algorithm assumes every value in <tt>[-Delta, Delta]</tt> to be 0. The default value for <tt>Delta</tt> is 0.00000000001.</item> | <item>@param <em>Delta</em> A positive rational number which describes the computing precision. In different steps, it is crucial, if a value is 0 or not. The algorithm assumes every value in <tt>[-Delta, Delta]</tt> to be 0. The default value for <tt>Delta</tt> is 0.00000000001.</item> | ||
− | <item>@param <em>NormalizeType</em> A integer of the set <tt>{1,2,3,4}</tt>. The default value is 2. This parameter describes, if and where required the input points are normalized. If <tt>NormalizeType</tt> equals 1, each coordinate of a point is divided by the maximal absolute value of all coordinates of this point. This ensures that all coordinates of the points are within <tt>[-1,1]</tt>. With <tt>NormalizeType=2</tt> no normalization is done at all. <tt>NormalizeType=3</tt> shifts each coordinate to <tt>[-1,1]</tt>, i.e. the minimal coordinate of a point is mapped to -1 and the maximal coordinate to 1, which describes a unique affine mapping. The last option is <tt>NormalizeType=4</tt>. In this case, each point is normalized by its euclidean norm | + | <item>@param <em>NormalizeType</em> A integer of the set <tt>{1,2,3,4}</tt>. The default value is 2. This parameter describes, if and where required the input points are normalized. If <tt>NormalizeType</tt> equals 1, each coordinate of a point is divided by the maximal absolute value of all coordinates of this point. This ensures that all coordinates of the points are within <tt>[-1,1]</tt>. With <tt>NormalizeType=2</tt> no normalization is done at all. <tt>NormalizeType=3</tt> shifts each coordinate to <tt>[-1,1]</tt>, i.e. the minimal coordinate of a point is mapped to -1 and the maximal coordinate to 1, which describes a unique affine mapping. The last option is <tt>NormalizeType=4</tt>. In this case, each point is normalized by its euclidean norm.</item> |
− | |||
− | |||
− | |||
− | |||
</itemize> | </itemize> | ||
Revision as of 18:46, 4 February 2012
Num.SubAVI
Computes a border basis of an almost vanishing sub-ideal for a set of points and an ideal using the Num.AVI algorithm.
Syntax
Num.SubAVI(Points:MAT, Epsilon:RAT, Basis:LIST):Object Num.SubAVI(Points:MAT, Epsilon:RAT, Basis:LIST, Delta:RAT, NormalizeType:INT):Object
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command computes a border basis of an almost vanishing sub-ideal for a set of points and an ideal using the Num.AVI algorithm.
The current ring has to be a ring over the rational numbers with a standard-degree
compatible term-ordering. Each row in the matrix Points represents one point, so the number of columns must equal the
number of indeterminates in the current ring.
@param Points The points for which a border basis is computed.
@param Epsilon A positive rational number describing which singular values should be treated as 0 (bigger values for epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval (0,1). As a rule of thumb, Tau is the expected percentage of error on the input points.
@param Basis A homogeneous Groebner Basis in the current ring. This basis defines the ideal in which we compute the basis of the approximate vanishing ideal.
@return A list of two results. First the border basis as a list of polynomials, second the vector space basis of P/I as a list of terms.
The following parameters are optional:
@param Delta A positive rational number which describes the computing precision. In different steps, it is crucial, if a value is 0 or not. The algorithm assumes every value in [-Delta, Delta] to be 0. The default value for Delta is 0.00000000001.
@param NormalizeType A integer of the set {1,2,3,4}. The default value is 2. This parameter describes, if and where required the input points are normalized. If NormalizeType equals 1, each coordinate of a point is divided by the maximal absolute value of all coordinates of this point. This ensures that all coordinates of the points are within [-1,1]. With NormalizeType=2 no normalization is done at all. NormalizeType=3 shifts each coordinate to [-1,1], i.e. the minimal coordinate of a point is mapped to -1 and the maximal coordinate to 1, which describes a unique affine mapping. The last option is NormalizeType=4. In this case, each point is normalized by its euclidean norm.
Example
Use P::=QQ[x,y,z]; Points := Mat([[2/3,0,0],[0,1,0],[0,0,1/3]]); R:=Num.SubAVI(Points, 0.1, [x]); Dec(R[1],2); R[2]; -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [<quotes>1 x^2 -0.66 x </quotes>, <quotes>1 xy </quotes>, <quotes>1 xz </quotes>] ------------------------------- [x] -------------------------------
See also