Difference between revisions of "ApCoCoA-1:CharP.MNLASolve"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
     <title>CharP.GBasisF2</title>
+
     <title>CharP.MNLASolve</title>
     <short_description>Computing the unique <tt>F_2-</tt>rational zero of a given polynomial system over <tt>F_2</tt>.</short_description>
+
     <short_description>Computes the unique <tt>F_2-</tt>rational zero of a given polynomial system over <tt>F_2</tt>.</short_description>
 
<syntax>
 
<syntax>
 
CharP.MNLASolve(F:LIST):LIST
 
CharP.MNLASolve(F:LIST):LIST
Line 9: Line 9:
  
 
<par/>
 
<par/>
This function computes the unique zero in <tt>F_2^n</tt> of a polynomial system over <tt>F_2 </tt>. It uses Mutant NLA<tt>-</tt>Algorithm to find the unique zero. The Mutant NLA<tt>-</tt>Algorithm generates a sequence of linear systems to solve the given system. The Mutant NLA<tt>-</tt>Algorithm can find the unique zero only. If the given polynomial system has more than one zeros in <tt>F_2^n </tt> then this function does not find any zero. In this case a massage for non-uniqueness will be displayed to the screen after reaching the maximum degree bound. In fact Mutant NLA<tt>-</tt>Algorithm is the NLA<tt>-</tt>Algorithm with mutant strategy. It uses <ref>linalg.EF</ref> for gaussian elimination.
+
This function computes the unique zero in <tt>F_2^n</tt> of a polynomial system over <tt>F_2 </tt>. It uses Mutant NLA-Algorithm to find the unique zero. The Mutant NLA-Algorithm generates a sequence of linear systems to solve the given system. The Mutant NLA-Algorithm can find the unique zero only. If the given polynomial system has more than one zeros in <tt>F_2^n </tt> then this function does not find any zero. In this case a massage for non-uniqueness will be displayed to the screen after reaching the maximum degree bound. In fact Mutant NLA-Algorithm is the NLA-Algorithm with mutant strategy. It uses <ref>LinAlg.EF</ref> for gaussian elimination.
  
  
Line 363: Line 363:
 
     <see>CharP.IMXLSolve</see>
 
     <see>CharP.IMXLSolve</see>
 
     <see>CharP.IMNLASolve</see>
 
     <see>CharP.IMNLASolve</see>
   
 
 
 
 
   </seealso>
 
   </seealso>
  
Line 374: Line 371:
 
     </types>
 
     </types>
  
     <key>charP.GBasisF2</key>
+
     <key>charP.mnlasolve</key>
     <key>GBasisF2</key>
+
     <key>mnlasolve</key>
 
     <key>finite field</key>
 
     <key>finite field</key>
 
     <wiki-category>Package_charP</wiki-category>
 
     <wiki-category>Package_charP</wiki-category>
 
   </command>
 
   </command>

Revision as of 14:15, 14 December 2010

CharP.MNLASolve

Computes the unique F_2-rational zero of a given polynomial system over F_2.

Syntax

CharP.MNLASolve(F:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.


This function computes the unique zero in F_2^n of a polynomial system over F_2 . It uses Mutant NLA-Algorithm to find the unique zero. The Mutant NLA-Algorithm generates a sequence of linear systems to solve the given system. The Mutant NLA-Algorithm can find the unique zero only. If the given polynomial system has more than one zeros in F_2^n then this function does not find any zero. In this case a massage for non-uniqueness will be displayed to the screen after reaching the maximum degree bound. In fact Mutant NLA-Algorithm is the NLA-Algorithm with mutant strategy. It uses LinAlg.EF for gaussian elimination.


  • @param F: List of polynomials of given system.

  • @return The unique solution of the given system in F_2^n.

Example

Use Z/(2)[x[1..4]];
F:=[
    x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, 
    x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, 
    x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, 
    x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1
    ];


-- Then we compute the solution with
CharP.MNLASolve(F);

-- And we achieve the following information on the screen together with the solution at the end.
----------------------------------------
    
 Finding Variable: x[4]
	The size of Matrix is:
		No. of Rows=4
		No. of Columns=11
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=4
		No. of Columns=11
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=11
		No. of Columns=5
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=11
		No. of Columns=5
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The No. of Mutants found = 0
	The size of Matrix is:
		No. of Rows=8
		No. of Columns=11
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=11
		No. of Columns=8
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0.015
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=11
		No. of Columns=8
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The No. of Mutants found = 1
	The size of Matrix is:
		No. of Rows=11
		No. of Columns=11
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0.016
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=11
		No. of Columns=10
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=11
		No. of Columns=10
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
x[4] = 1
 Finding Variable: x[3]
	The size of Matrix is:
		No. of Rows=4
		No. of Columns=7
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=4
		No. of Columns=7
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=7
		No. of Columns=5
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=7
		No. of Columns=5
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The No. of Mutants found = 0
	The size of Matrix is:
		No. of Rows=7
		No. of Columns=7
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=7
		No. of Columns=7
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
x[3] = 0
 Finding Variable: x[2]
	The size of Matrix is:
		No. of Rows=3
		No. of Columns=4
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=3
		No. of Columns=4
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=4
		No. of Columns=4
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=4
		No. of Columns=4
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
x[2] = 1
[0, 1, 0, 1]


Example

Use Z/(2)[x[1..4]];
F:=[ 
    x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], 
    x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4],  
    x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2],  
    x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2]
   ];

-- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions 

-- Then we compute the solution with
CharP.MNLASolve(F);

-- And we achieve the following information on the screen.
----------------------------------------
    
 Finding Variable: x[4]
	The size of Matrix is:
		No. of Rows=4
		No. of Columns=9
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=3
		No. of Columns=9
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=9
		No. of Columns=4
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=9
		No. of Columns=4
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The No. of Mutants found = 0
	The size of Matrix is:
		No. of Rows=15
		No. of Columns=14
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=14
		No. of Columns=12
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=14
		No. of Columns=12
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The No. of Mutants found = 4
	The size of Matrix is:
		No. of Rows=27
		No. of Columns=14
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=14
		No. of Columns=13
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=14
		No. of Columns=13
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The No. of Mutants found = 0
	The size of Matrix is:
		No. of Rows=12
		No. of Columns=14
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=14
		No. of Columns=13
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0.016
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=14
		No. of Columns=13
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The No. of Mutants found = 0
	The size of Matrix is:
		No. of Rows=19
		No. of Columns=15
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=15
		No. of Columns=14
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=15
		No. of Columns=14
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The No. of Mutants found = 0
	The size of Matrix is:
		No. of Rows=14
		No. of Columns=15
Appling Gaussian Elimination for finding Mutants...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Compeleted
	The size of Matrix is:
		No. of Rows=15
		No. of Columns=14
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
	The size of Matrix is:
		No. of Rows=15
		No. of Columns=14
Appling Gaussian Elimination to check solution coordinate...
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
Gaussian Elimination Completed.
x[4] = NA
	Please Check the uniqueness of solution.
	The Given system of polynomials does not
	seem to have a unique solution or it has
	no solution over the finite field F2.



See also

CharP.MXLSolve

Introduction to CoCoAServer

Introduction to Groebner Basis in CoCoA

CharP.GBasisF2

CharP.XLSolve

CharP.IMXLSolve

CharP.IMNLASolve