Difference between revisions of "ApCoCoA-1:NC.NR"

From ApCoCoAWiki
Line 5: Line 5:
 
</short_description>
 
</short_description>
 
<syntax>
 
<syntax>
NC.NR(F:LIST, Polynomials:LIST):LIST
+
NC.NR(F:LIST, G:LIST):LIST
 
</syntax>
 
</syntax>
 
<description>
 
<description>
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
<par/>
 
<par/>
Before calling the function, please set ring environment coefficient field <tt>K</tt>, alphabet <tt>X</tt> and ordering through the functions <ref>NC.SetFp</ref>(Prime) (or <ref>NC.UnsetFp</ref>()), <ref>NC.SetX</ref>(X) and <ref>NC.SetOrdering</ref>(Ordering) respectively. Default coefficient field is <tt>Q</tt>. Default ordering is length-lexicographic ordering (<quotes>LLEX</quotes>). For more information, please check the relevant functions.
+
Please set ring environment coefficient field <tt>K</tt>, alphabet (or indeterminates) <tt>X</tt> and ordering through the functions <ref>NC.SetFp</ref>(Prime), <ref>NC.SetX</ref>(X) and <ref>NC.SetOrdering</ref>(Ordering), respectively, before calling the function. Default coefficient field is <tt>Q</tt>. Default ordering is length-lexicographic ordering (<quotes>LLEX</quotes>). For more information, please check the relevant functions.
 
<itemize>
 
<itemize>
 
<item></item>
 
<item></item>
<item>@param <em>F</em>: a polynomial in <tt>K&lt;X&gt;</tt>. Each polynomial in <tt>K&lt;X&gt;</tt> is represented as a LIST of LISTs, which are pairs of form [c, w] where c is in <tt>K</tt> and w is a word in <tt>X*</tt>.  Unit in <tt>X*</tt> is empty word represented as an empty string <quotes></quotes>. <tt>0</tt> polynomial is represented as an empty list. For example, polynomial <tt>F:=xy-y+1</tt> in <tt>K&lt;x,y&gt;</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]].</item>
+
<item>@param <em>F</em>: a polynomial in <tt>K&lt;X&gt;</tt>. Each polynomial is represented as a LIST of LISTs, which are pairs of form [C, W] where C is a coefficient and W is a word (or term). Each term is represented as a STRING. For example, <tt>xy^2x</tt> is represented as <quotes>xyyx</quotes>, unit is represented as an empty string <quotes></quotes>. Then, polynomial <tt>F=xy-y+1</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]]. <tt>0</tt> polynomial is represented as an empty LIST [].</item>
<item>@param <em>Polynomials</em>: a LIST of polynomials in <tt>K&lt;X&gt;</tt>.</item>
+
<item>@param <em>Polynomials</em>: a LIST of polynomials.</item>
<item>@return: a list which represents normal remainder of <tt>F</tt> with respect to <tt>Polynomials</tt>.</item>
+
<item>@return: a LIST which represents a normal remainder of F with respect to G.</item>
 
</itemize>
 
</itemize>
 
<example>
 
<example>

Revision as of 19:34, 11 December 2010

NC.NR

Normal remainder polynomial with respect to a list of polynomials over a free associative K-algebra.

Syntax

NC.NR(F:LIST, G:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set ring environment coefficient field K, alphabet (or indeterminates) X and ordering through the functions NC.SetFp(Prime), NC.SetX(X) and NC.SetOrdering(Ordering), respectively, before calling the function. Default coefficient field is Q. Default ordering is length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.

  • @param F: a polynomial in K<X>. Each polynomial is represented as a LIST of LISTs, which are pairs of form [C, W] where C is a coefficient and W is a word (or term). Each term is represented as a STRING. For example, xy^2x is represented as "xyyx", unit is represented as an empty string "". Then, polynomial F=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. 0 polynomial is represented as an empty LIST [].

  • @param Polynomials: a LIST of polynomials.

  • @return: a LIST which represents a normal remainder of F with respect to G.

Example

NC.SetX(<quotes>abc</quotes>);
NC.RingEnv();
Coefficient ring : Q
Alphabet : abc
Ordering : LLEX

-------------------------------
F:=[[1,<quotes>ab</quotes>],[1,<quotes>aca</quotes>],[1,<quotes>bb</quotes>],[1,<quotes>bab</quotes>],[1,<quotes></quotes>]];
F1 := [[1,<quotes>a</quotes>],[1,<quotes>c</quotes>]]; 
F2 := [[1,<quotes>b</quotes>],[1,<quotes>ba</quotes>]];
Polynomials:=[F1,F2];
NC.NR(F,Polynomials);
[[1, <quotes>bcb</quotes>], [-1, <quotes>ccc</quotes>], [-1, <quotes>bb</quotes>], [1, <quotes>cb</quotes>], [-1, <quotes></quotes>]]
-------------------------------
NC.SetOrdering(<quotes>ELIM</quotes>);
NC.NR(F,Polynomials);
[[1, <quotes>bcb</quotes>], [-1, <quotes>bb</quotes>], [1, <quotes>cb</quotes>], [-1, <quotes>ccc</quotes>], [-1, <quotes></quotes>]]
-------------------------------

See also

NC.Add

NC.BP

NC.Deg

NC.FindPolynomials

NC.GB

NC.Intersection

NC.IsGB

NC.KernelOfHomomorphism

NC.LC

NC.LT

NC.LTIdeal

NC.MRAdd

NC.MRBP

NC.MRIntersection

NC.MRKernelOfHomomorphism

NC.MRMinimalPolynomials

NC.MRMultiply

NC.MRReducedBP

NC.MRSubtract

NC.MinimalPolynomial

NC.Multiply

NC.ReducedBP

NC.ReducedGB

NC.SetFp

NC.SetOrdering

NC.SetRelations

NC.SetRules

NC.SetX

NC.Subtract

NC.UnsetFp

NC.UnsetOrdering

NC.UnsetRelations

NC.UnsetRules

NC.UnsetX

Introduction to CoCoAServer