ApCoCoA-1:CharP.MXLSolve: Difference between revisions
New page: <command> <title>CharP.GBasisF2</title> <short_description>Computing the unique <tt>F_2-</tt>rational zero of a given polynomial system over <tt>F_2</tt>.</short_description> <synt... |
No edit summary |
||
Line 3: | Line 3: | ||
<short_description>Computing the unique <tt>F_2-</tt>rational zero of a given polynomial system over <tt>F_2</tt>.</short_description> | <short_description>Computing the unique <tt>F_2-</tt>rational zero of a given polynomial system over <tt>F_2</tt>.</short_description> | ||
<syntax> | <syntax> | ||
CharP. | CharP.MXLSolve(F:LIST):LIST | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | |||
<par/> | <par/> | ||
This function computes the unique zero in <tt>F_2^n</tt> of a polynomial system over <tt>F_2 </tt>. It uses XL-Algorithm to find the unique zero. The XL-Algorithm is impelemented only to find a unique solution. If the given polynomial system has more than one zeros in <tt>F_2^n </tt> then this function does not find any zero. In this case a massage for non-uniqueness will be displayed to the screen after reaching the maximum degree bound | This function computes the unique zero in <tt>F_2^n</tt> of a polynomial system over <tt>F_2 </tt>. It uses Mutant XL-Algorithm to find the unique zero. The Mutant XL-Algorithm is impelemented only to find a unique solution. If the given polynomial system has more than one zeros in <tt>F_2^n </tt> then this function does not find any zero. In this case a massage for non-uniqueness will be displayed to the screen after reaching the maximum degree bound. | ||
<itemize> | <itemize> | ||
<item>@param <em>F</em> | <item>@param <em>F:</em> List of polynomials of given system.</item> | ||
<item>@return The unique solution of the given system in <tt>F_2^n</tt>. </item> | <item>@return The unique solution of the given system in <tt>F_2^n</tt>. </item> | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
Use | Use Z/(2)[x[1..4]]; | ||
F:=[ | |||
x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, | |||
[x | x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, | ||
x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, | |||
x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 | |||
]; | |||
-- Then we compute the solution with | |||
CharP.MXLSolve(F); | |||
-- And we achieve the following information on the screen together with the solution at the end. | |||
---------------------------------------- | |||
The size of Matrix is: | |||
No. of Rows=4 | |||
No. of Columns=11 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | |||
------------------------------- | |||
Gaussian Elimination Completed. | |||
The size of Matrix is: | |||
No. of Rows=4 | |||
No. of Columns=11 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | |||
------------------------------- | |||
Gaussian Elimination Completed. | |||
The variables found till now, if any are: | |||
[x[1], x[2], x[3], x[4]] | |||
The No. of Mutants found = 0 | |||
The size of Matrix is: | |||
No. of Rows=8 | |||
No. of Columns=11 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | |||
------------------------------- | |||
Gaussian Elimination Completed. | |||
The variables found till now, if any are: | |||
[x[1], x[2], x[3], x[4]] | |||
The No. of Mutants found = 1 | |||
The size of Matrix is: | |||
No. of Rows=11 | |||
No. of Columns=11 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | |||
------------------------------- | ------------------------------- | ||
Use Z | Gaussian Elimination Completed. | ||
-- | The variables found till now, if any are: | ||
-- | [0, 1, 0, 1] | ||
[0, 1, 0, 1] | |||
</example> | |||
<example> | |||
Use Z/(2)[x[1..4]]; | |||
F:=[ | |||
x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], | |||
x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4], | |||
x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2], | |||
x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2] | |||
]; | |||
-- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions | |||
-- Then we compute the solution with | |||
CharP.MXLSolve(F); | |||
-- And we achieve the following information on the screen. | |||
---------------------------------------- | |||
The size of Matrix is: | |||
No. of Rows=4 | |||
No. of Columns=9 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | |||
------------------------------- | |||
Gaussian Elimination Completed. | |||
The size of Matrix is: | |||
No. of Rows=3 | |||
No. of Columns=9 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | |||
------------------------------- | |||
Gaussian Elimination Completed. | |||
The variables found till now, if any are: | |||
[x[1], x[2], x[3], x[4]] | |||
The No. of Mutants found = 0 | |||
The size of Matrix is: | |||
No. of Rows=14 | |||
No. of Columns=14 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | |||
------------------------------- | |||
Gaussian Elimination Completed. | |||
The variables found till now, if any are: | |||
[x[1], x[2], x[3], x[4]] | |||
The No. of Mutants found = 4 | |||
The size of Matrix is: | |||
No. of Rows=27 | |||
No. of Columns=14 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | |||
------------------------------- | |||
Gaussian Elimination Completed. | |||
The variables found till now, if any are: | |||
[x[1], x[2], x[3], x[4]] | |||
The No. of Mutants found = 0 | |||
The size of Matrix is: | |||
No. of Rows=12 | |||
No. of Columns=14 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | |||
------------------------------- | ------------------------------- | ||
Gaussian Elimination Completed. | |||
The variables found till now, if any are: | |||
[x[1], x[2], x[3], x[4]] | |||
The No. of Mutants found = 0 | |||
The size of Matrix is: | |||
No. of Rows=19 | |||
No. of Columns=15 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | -- CoCoAServer: computing Cpu Time = 0 | ||
------------------------------- | ------------------------------- | ||
[ | Gaussian Elimination Completed. | ||
The variables found till now, if any are: | |||
[x[1], x[2], x[3], x[4]] | |||
The No. of Mutants found = 0 | |||
The size of Matrix is: | |||
No. of Rows=14 | |||
No. of Columns=15 | |||
Appling Gaussian Elimination... | |||
-- CoCoAServer: computing Cpu Time = 0 | |||
------------------------------- | ------------------------------- | ||
Gaussian Elimination Completed. | |||
The variables found till now, if any are: | |||
[x[1], x[2], x[3], x[4]] | |||
Please Check the uniqueness of solution. | |||
The Given system of polynomials does not | |||
seem to have a unique solution. | |||
</example> | </example> | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
<see> | <see>CharP.XLSolve</see> | ||
<see>Introduction to CoCoAServer</see> | <see>Introduction to CoCoAServer</see> | ||
<see>Introduction to Groebner Basis in CoCoA</see> | <see>Introduction to Groebner Basis in CoCoA</see> | ||
Line 46: | Line 169: | ||
<see>CharP.GBasisF8</see> | <see>CharP.GBasisF8</see> | ||
<see>CharP.GBasisF16</see> | <see>CharP.GBasisF16</see> | ||
<see>CharP. | <see>CharP.IMXLSolve</see> | ||
</seealso> | </seealso> |
Revision as of 08:43, 7 December 2010
CharP.GBasisF2
Computing the unique F_2-rational zero of a given polynomial system over F_2.
Syntax
CharP.MXLSolve(F:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function computes the unique zero in F_2^n of a polynomial system over F_2 . It uses Mutant XL-Algorithm to find the unique zero. The Mutant XL-Algorithm is impelemented only to find a unique solution. If the given polynomial system has more than one zeros in F_2^n then this function does not find any zero. In this case a massage for non-uniqueness will be displayed to the screen after reaching the maximum degree bound.
@param F: List of polynomials of given system.
@return The unique solution of the given system in F_2^n.
Example
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; -- Then we compute the solution with CharP.MXLSolve(F); -- And we achieve the following information on the screen together with the solution at the end. ---------------------------------------- The size of Matrix is: No. of Rows=4 No. of Columns=11 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The size of Matrix is: No. of Rows=4 No. of Columns=11 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The No. of Mutants found = 0 The size of Matrix is: No. of Rows=8 No. of Columns=11 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The No. of Mutants found = 1 The size of Matrix is: No. of Rows=11 No. of Columns=11 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [0, 1, 0, 1] [0, 1, 0, 1]
Example
Use Z/(2)[x[1..4]]; F:=[ x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2] ]; -- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions -- Then we compute the solution with CharP.MXLSolve(F); -- And we achieve the following information on the screen. ---------------------------------------- The size of Matrix is: No. of Rows=4 No. of Columns=9 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The size of Matrix is: No. of Rows=3 No. of Columns=9 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The No. of Mutants found = 0 The size of Matrix is: No. of Rows=14 No. of Columns=14 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The No. of Mutants found = 4 The size of Matrix is: No. of Rows=27 No. of Columns=14 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The No. of Mutants found = 0 The size of Matrix is: No. of Rows=12 No. of Columns=14 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The No. of Mutants found = 0 The size of Matrix is: No. of Rows=19 No. of Columns=15 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] The No. of Mutants found = 0 The size of Matrix is: No. of Rows=14 No. of Columns=15 Appling Gaussian Elimination... -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Gaussian Elimination Completed. The variables found till now, if any are: [x[1], x[2], x[3], x[4]] Please Check the uniqueness of solution. The Given system of polynomials does not seem to have a unique solution.
See also
Introduction to Groebner Basis in CoCoA