Difference between revisions of "ApCoCoA-1:CharP.GBasisModSquares"
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title> | + | <title>CharP.GBasisModSquares</title> |
<short_description>Computing a Groebner Basis of a given ideal intersected with <tt>x^2-x</tt> for all indeterminates <tt>x</tt>.</short_description> | <short_description>Computing a Groebner Basis of a given ideal intersected with <tt>x^2-x</tt> for all indeterminates <tt>x</tt>.</short_description> | ||
<syntax> | <syntax> | ||
− | + | CharP.GBasisModSquares(Ideal:IDEAL):LIST | |
</syntax> | </syntax> | ||
<description> | <description> | ||
Line 29: | Line 29: | ||
------------------------------- | ------------------------------- | ||
I:=Ideal(x-y^2,x^2+xy,y^3); | I:=Ideal(x-y^2,x^2+xy,y^3); | ||
− | + | CharP.GBasisModSquares(I); | |
-- WARNING: Coeffs are not in a field | -- WARNING: Coeffs are not in a field | ||
-- GBasis-related computations could fail to terminate or be wrong | -- GBasis-related computations could fail to terminate or be wrong | ||
Line 55: | Line 55: | ||
<key>gbasismodsquares</key> | <key>gbasismodsquares</key> | ||
− | <key> | + | <key>charP.gbasismodsquares</key> |
<key>finite field</key> | <key>finite field</key> | ||
− | <wiki-category> | + | <wiki-category>Package_charP</wiki-category> |
</command> | </command> |
Revision as of 15:19, 6 December 2010
CharP.GBasisModSquares
Computing a Groebner Basis of a given ideal intersected with x^2-x for all indeterminates x.
Syntax
CharP.GBasisModSquares(Ideal:IDEAL):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function returns the reduced Groebner basis for the given ideal intersected with the ideal generated by x^2-x for all indeterminates. If x^2-x for all indeterminates is in the ideal (e.g. the set of zeros is a subset of {0,1}^n) this method should produce the Groebner Basis much faster!
Please be aware, that this is much more efficient if the term ordering is Lex, DegLex or DegRevLex. Otherwise, first a DegRevLex Groebner Basis is computed and then transformed with the FGLM.FGLM-algorithm.
@param Ideal An Ideal.
@return The reduced Groebner Basis of the given ideal.
Example
Use R::=QQ[x,y,z]; I:=Ideal(x-y^2,x^2+xy,y^3); GBasis(I); [x^2 + xy, -y^2 + x, -xy] ------------------------------- Use Z::=ZZ[x,y,z]; -- WARNING: Coeffs are not in a field -- GBasis-related computations could fail to terminate or be wrong ------------------------------- I:=Ideal(x-y^2,x^2+xy,y^3); CharP.GBasisModSquares(I); -- WARNING: Coeffs are not in a field -- GBasis-related computations could fail to terminate or be wrong -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [y, x] -------------------------------
See also
Introduction to Groebner Basis in CoCoA
Representation of finite fields