Difference between revisions of "ApCoCoA-1:SAT.ConvertToXOR"
From ApCoCoAWiki
Line 4: | Line 4: | ||
</short_description> | </short_description> | ||
<syntax> | <syntax> | ||
− | SAT.ConvertToXOR(SPE:LIST, QStrategy:INT) | + | SAT.ConvertToXOR(SPE:LIST, QStrategy:INT, CStrategy:INT) |
</syntax> | </syntax> | ||
<description> | <description> | ||
Line 14: | Line 14: | ||
<item>@param <em>SPE</em>: A List containing the polynomial equations of the system.</item> | <item>@param <em>SPE</em>: A List containing the polynomial equations of the system.</item> | ||
<item>@param <em>QStrategy</em>: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Adv. Lin. Partner;</item> | <item>@param <em>QStrategy</em>: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Adv. Lin. Partner;</item> | ||
+ | <item>@param <em>CStrategy</em>: Strategy for cubic substitution. 0 - Standard; 1 - Quadratic Partner;</item> | ||
</itemize> | </itemize> | ||
Line 23: | Line 24: | ||
F3:= x[1]x[2] + x[3]; | F3:= x[1]x[2] + x[3]; | ||
SPE:=[F1,F2,F3]; | SPE:=[F1,F2,F3]; | ||
− | SAT.ConvertToXOR(SPE,0); | + | SAT.ConvertToXOR(SPE,0,0); |
SAT.LaunchCryptoMiniSat(<quotes>sat_xor.cnf</quotes>); | SAT.LaunchCryptoMiniSat(<quotes>sat_xor.cnf</quotes>); | ||
SAT.GetResult(); | SAT.GetResult(); | ||
Line 36: | Line 37: | ||
F3:=x[1]x[2] + x[2]x[3] + x[2]; | F3:=x[1]x[2] + x[2]x[3] + x[2]; | ||
SPE:=[F1,F2,F3]; | SPE:=[F1,F2,F3]; | ||
− | SAT.ConvertToXOR(SPE,0); | + | SAT.ConvertToXOR(SPE,0,0); |
SAT.LaunchCryptoMiniSat(<quotes>sat_xor.cnf</quotes>); | SAT.LaunchCryptoMiniSat(<quotes>sat_xor.cnf</quotes>); | ||
SAT.GetResult(); | SAT.GetResult(); |
Revision as of 08:26, 26 May 2010
SAT.ConvertToXOR
Converts a given quadratic (cubic) system of polynomial equations (SPE) over GF(2) to XOR-CNF. Writes the XOR-CNF to the file sat_xor.cnf.
Syntax
SAT.ConvertToXOR(SPE:LIST, QStrategy:INT, CStrategy:INT)
Description
Note: XOR-CNF files are only applicable with CryptoMiniSat!
This function starts an alternative conversion algorithm.
@param SPE: A List containing the polynomial equations of the system.
@param QStrategy: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Adv. Lin. Partner;
@param CStrategy: Strategy for cubic substitution. 0 - Standard; 1 - Quadratic Partner;
Example
-- quadratic system: Use R::=ZZ/(2)[x[1..3]]; F1:= x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]; F2:= x[2] + 1; F3:= x[1]x[2] + x[3]; SPE:=[F1,F2,F3]; SAT.ConvertToXOR(SPE,0,0); SAT.LaunchCryptoMiniSat(<quotes>sat_xor.cnf</quotes>); SAT.GetResult(); --Result: [0,1,0] Test with: Eval(SPE,[0,1,0]);
Example
-- cubic system: Use ZZ/(2)[x[1..3]]; F1:=x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[3] +1; F2:=x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[2]; F3:=x[1]x[2] + x[2]x[3] + x[2]; SPE:=[F1,F2,F3]; SAT.ConvertToXOR(SPE,0,0); SAT.LaunchCryptoMiniSat(<quotes>sat_xor.cnf</quotes>); SAT.GetResult(); --Result: [0,0,1] Test with: Eval(SPE,[0,0,1]);