Difference between revisions of "ApCoCoA-1:Weyl.WRGB"
From ApCoCoAWiki
Line 20: | Line 20: | ||
Weyl.WRGB(L); | Weyl.WRGB(L); | ||
[1] | [1] | ||
+ | ------------------------------- | ||
+ | </example> | ||
+ | <example> | ||
+ | A2::=ZZ/7[x[1..2],y[1..2]]; -- define appropriate ring | ||
+ | Use A2; | ||
+ | I:=Ideal(2x[1]^14y[1]^7,x[1]^2y[1]^3+x[1]^2-1,y[2]^7-1,x[2]^3y[2]^2-x[2]y[2]-3x[2]-1); | ||
+ | GbI:=Weyl.WGB(I,0);Len(GbI); | ||
+ | |||
+ | ------------------------------- | ||
+ | -- CoCoAServer: computing Cpu Time = 0.485 | ||
+ | ------------------------------- | ||
+ | 42 -- size of complete GB of the ideal I | ||
+ | ------------------------------- | ||
+ | Time GbI:=Weyl.WRGB(GbI);Len(GbI); | ||
+ | |||
+ | Cpu time = 9.61, User time = 10 | ||
+ | ------------------------------- | ||
+ | 11 | ||
+ | ------------------------------- | ||
+ | -- Done. | ||
+ | ------------------------------- | ||
+ | Time GbI:=Weyl.WRGBS(GbI);Len(GbI); -- Weyl.WRGBS() can now be used for calling same implementation in ApCoCoALib | ||
+ | -- note that this speeds up the computations | ||
+ | ------------------------------- | ||
+ | -- CoCoAServer: computing Cpu Time = 0 | ||
+ | ------------------------------- | ||
+ | Cpu time = 0.04, User time = 0 | ||
+ | ------------------------------- | ||
+ | 11 -- this is now size of reduced GB of the ideal I | ||
+ | ------------------------------- | ||
+ | -- Done. | ||
------------------------------- | ------------------------------- | ||
</example> | </example> |
Revision as of 12:05, 25 May 2010
Weyl.WRGB
Reduced Groebner basis of an ideal I in Weyl algebra A_n.
Syntax
Weyl.WRGB(GB:LIST):LIST
Description
This function converts a Weyl Groebner basis GB computed by ApCoCoAServer into the reduced Weyl Groebner Basis. If GB is not a Groebner basis then the output will not be the reduced Groebner basis. In fact, this function reduces a list GB of Weyl polynomials using Weyl.WNR into a new list L such that Ideal(L) = Ideal(GB), every polynomial is reduced with respect to the remaining polynomials in the list L and leading coefficient of each polynomial in L is 1.
@param GB Groebner Basis of an ideal in the Weyl algebra.
@result The reduced Groebner Basis of the given ideal.
Example
A1::=QQ[x,d]; --Define appropriate ring Use A1; L:=[x,d,1]; Weyl.WRGB(L); [1] -------------------------------
Example
A2::=ZZ/7[x[1..2],y[1..2]]; -- define appropriate ring Use A2; I:=Ideal(2x[1]^14y[1]^7,x[1]^2y[1]^3+x[1]^2-1,y[2]^7-1,x[2]^3y[2]^2-x[2]y[2]-3x[2]-1); GbI:=Weyl.WGB(I,0);Len(GbI); ------------------------------- -- CoCoAServer: computing Cpu Time = 0.485 ------------------------------- 42 -- size of complete GB of the ideal I ------------------------------- Time GbI:=Weyl.WRGB(GbI);Len(GbI); Cpu time = 9.61, User time = 10 ------------------------------- 11 ------------------------------- -- Done. ------------------------------- Time GbI:=Weyl.WRGBS(GbI);Len(GbI); -- Weyl.WRGBS() can now be used for calling same implementation in ApCoCoALib -- note that this speeds up the computations ------------------------------- -- CoCoAServer: computing Cpu Time = 0 ------------------------------- Cpu time = 0.04, User time = 0 ------------------------------- 11 -- this is now size of reduced GB of the ideal I ------------------------------- -- Done. -------------------------------
See also
Introduction to Groebner Basis in CoCoA