Difference between revisions of "ApCoCoA-1:Weyl.WRedGB"

From ApCoCoAWiki
m
Line 7: Line 7:
 
     <description>
 
     <description>
 
This function converts Groebner basis <tt>GB</tt> computed by ApCoCoAServer into the reduced Groebner Basis. If <tt>GB</tt> is not a Groebner basis then the output will not be the reduced Groebner basis. In fact, this function reduces a list <tt>GB</tt> of Weyl polynomials using <ref>Weyl.WNR</ref> into a new list <tt>L</tt> such that <tt>Ideal(L) = Ideal(GB)</tt>.
 
This function converts Groebner basis <tt>GB</tt> computed by ApCoCoAServer into the reduced Groebner Basis. If <tt>GB</tt> is not a Groebner basis then the output will not be the reduced Groebner basis. In fact, this function reduces a list <tt>GB</tt> of Weyl polynomials using <ref>Weyl.WNR</ref> into a new list <tt>L</tt> such that <tt>Ideal(L) = Ideal(GB)</tt>.
This function is replaced by the function <ref>Weyl.WRGB</ref> inside the function <ref>Weyl.WGB</ref> to get a list of minimal Groebner basis elements for the ideal <tt>I</tt>.
 
 
<par/>
 
<par/>
 
<em>Note:</em> This function is faster than <ref>Weyl.WRGB</ref> for a list <tt>GB</tt> of large size.
 
<em>Note:</em> This function is faster than <ref>Weyl.WRGB</ref> for a list <tt>GB</tt> of large size.
Line 28: Line 27:
 
       <see>Weyl.WGB</see>
 
       <see>Weyl.WGB</see>
 
       <see>Weyl.WRGB</see>
 
       <see>Weyl.WRGB</see>
 +
      <see>Weyl.WRGBS</see>
 
       <see>Introduction to Groebner Basis in CoCoA</see>
 
       <see>Introduction to Groebner Basis in CoCoA</see>
 
       <see>Introduction to CoCoAServer</see>
 
       <see>Introduction to CoCoAServer</see>

Revision as of 12:04, 24 May 2010

Weyl.WRedGB

Computes reduced Groebner basis of a D-ideal in Weyl algebra A_n.

Syntax

Weyl.WRedGB(GB:LIST):LIST

Description

This function converts Groebner basis GB computed by ApCoCoAServer into the reduced Groebner Basis. If GB is not a Groebner basis then the output will not be the reduced Groebner basis. In fact, this function reduces a list GB of Weyl polynomials using Weyl.WNR into a new list L such that Ideal(L) = Ideal(GB).

Note: This function is faster than Weyl.WRGB for a list GB of large size.

  • @param GB Groebner Basis of an ideal in the Weyl algebra.

  • @result The reduced Groebner Basis of the given ideal.

Example

A1::=QQ[x,d];	--Define appropriate ring
Use A1;
L:=[x,d,1];
Weyl.WRedGB(L);
[1]
-------------------------------

See also

Weyl.WNormalForm

Weyl.WGB

Weyl.WRGB

Weyl.WRGBS

Introduction to Groebner Basis in CoCoA

Introduction to CoCoAServer