Difference between revisions of "ApCoCoA-1:Bertini.BPCSolve"

From ApCoCoAWiki
Line 31: Line 31:
 
Bertini.BPCSolve(P,SysTyp,ConfigSet);
 
Bertini.BPCSolve(P,SysTyp,ConfigSet);
  
-- And we achieve a list of lists containing witness point supersets:
+
-- And we achieve a list of lists containing witness point supersets.
 
----------------------------------------
 
----------------------------------------
 
[
 
[
Line 66: Line 66:
  
 
<example>
 
<example>
-- Homogenous positive dimensional solving with User Configurations.
+
-- An example of homogenous positive dimensional solving with user configurations.
-- We want to solve positive dimensional homogenous system x^2-wy=0, x^3-zw^2=0, for fixed higher precision.
+
-- We want to solve a positive dimensional homogenous polynomial system x^2-wy=0, x^3-zw^2=0, for fixed higher precision.
  
Use S ::= QQ[x,y,z,w];             --  Define appropriate ring
+
Use S ::= QQ[x,y,z,w];          
M := [x^2-wy, x^3-zw^2];
+
P := [x^2-wy, x^3-zw^2];
 
SysTyp := <quotes>hom</quotes>;
 
SysTyp := <quotes>hom</quotes>;
 
ConfigSet := [<quotes>TRACKTYPE: 1</quotes>, <quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>];
 
ConfigSet := [<quotes>TRACKTYPE: 1</quotes>, <quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>];
  
 
-- Then we compute the solution with
 
-- Then we compute the solution with
$Bertini.BPCSolve(M,SysTyp,ConfigSet);
+
Bertini.BPCSolve(P,SysTyp,ConfigSet);
  
-- And we achieve a list of lists containing witness point supersets:
+
-- And we achieve a list of lists containing witness point supersets.
 
----------------------------------------
 
----------------------------------------
[[Vector(-3789467495454911613823851164626681463651/10000000000000000000000000000000000000000,
+
[
 +
[
 +
Vector(-3789467495454911613823851164626681463651/10000000000000000000000000000000000000000,
 
  1200734725407166211921788902942849185503/1000000000000000000000000000000000000000),
 
  1200734725407166211921788902942849185503/1000000000000000000000000000000000000000),
 
  Vector(-246001393466366309986866914393676541221/125000000000000000000000000000000000000,
 
  Vector(-246001393466366309986866914393676541221/125000000000000000000000000000000000000,
Line 86: Line 88:
 
  -1611351492565067582850937617799756261201/500000000000000000000000000000000000000),
 
  -1611351492565067582850937617799756261201/500000000000000000000000000000000000000),
 
  Vector(7319342772891341731507480575523588267957/10000000000000000000000000000000000000000,
 
  Vector(7319342772891341731507480575523588267957/10000000000000000000000000000000000000000,
  19870617690036348352514491511362841819/78125000000000000000000000000000000000)],
+
  19870617690036348352514491511362841819/78125000000000000000000000000000000000)
  [Vector(3048866987455758258878751406208402973051/10000000000000000000000000000000000000000,
+
],
 +
  [
 +
Vector(3048866987455758258878751406208402973051/10000000000000000000000000000000000000000,
 
  -2898035102105205140344370335032912017083/5000000000000000000000000000000000000000),
 
  -2898035102105205140344370335032912017083/5000000000000000000000000000000000000000),
 
  Vector(-5539460172405722710678127397246600460333/10000000000000000000000000000000000000000,
 
  Vector(-5539460172405722710678127397246600460333/10000000000000000000000000000000000000000,
Line 94: Line 98:
 
  736987741407866469670001545005869554379/2500000000000000000000000000000000000000),
 
  736987741407866469670001545005869554379/2500000000000000000000000000000000000000),
 
  Vector(1400107689781321399920833229898425820819/5000000000000000000000000000000000000000,
 
  Vector(1400107689781321399920833229898425820819/5000000000000000000000000000000000000000,
  2191732091470400698700321524968735909/3125000000000000000000000000000000000)],
+
  2191732091470400698700321524968735909/3125000000000000000000000000000000000)
  [Vector(354996962262331142136973979259558150991/400000000000000000000000000000000000000,
+
],
 +
  [
 +
Vector(354996962262331142136973979259558150991/400000000000000000000000000000000000000,
 
  1816598489416934847206968307485748462499/1000000000000000000000000000000000000000),
 
  1816598489416934847206968307485748462499/1000000000000000000000000000000000000000),
 
  Vector(1967511413109990263685197237623604100867/1000000000000000000000000000000000000000,
 
  Vector(1967511413109990263685197237623604100867/1000000000000000000000000000000000000000,
Line 102: Line 108:
 
  1081558694105850161535777129438751374871/1000000000000000000000000000000000000000),
 
  1081558694105850161535777129438751374871/1000000000000000000000000000000000000000),
 
  Vector(9143301947447558293770285751969676840889/100000000000000000000000000000000000000000,
 
  Vector(9143301947447558293770285751969676840889/100000000000000000000000000000000000000000,
  155856385824660750993297595625859090071/100000000000000000000000000000000000000)],
+
  155856385824660750993297595625859090071/100000000000000000000000000000000000000)
  [Vector(-825065032224960020386592540685453030181/50000000000000000000000000000000000000000000000000000000000000000000000000,
+
],
 +
  [
 +
Vector(-825065032224960020386592540685453030181/50000000000000000000000000000000000000000000000000000000000000000000000000,
 
  -870815934189224420445215323683468742119/50000000000000000000000000000000000000000000000000000000000000000000000000),
 
  -870815934189224420445215323683468742119/50000000000000000000000000000000000000000000000000000000000000000000000000),
 
  Vector(-2670487187708557160891411850766573823343/1000000000000000000000000000000000000000,
 
  Vector(-2670487187708557160891411850766573823343/1000000000000000000000000000000000000000,
Line 110: Line 118:
 
  -5881973549623185468407939053314195499303/10000000000000000000000000000000000000000),
 
  -5881973549623185468407939053314195499303/10000000000000000000000000000000000000000),
 
  Vector(-6276316819449156764984023481918376370437/1000000000000000000000000000000000000000000000000000000000000000000000000000,
 
  Vector(-6276316819449156764984023481918376370437/1000000000000000000000000000000000000000000000000000000000000000000000000000,
  -457717591175786069863350181676761297761/25000000000000000000000000000000000000000000000000000000000000000000000000)]]
+
  -457717591175786069863350181676761297761/25000000000000000000000000000000000000000000000000000000000000000000000000)
 +
]
 +
]
  
--For other Bertini output files please refer to Bertini directory (.../ApCoCoA-1.2/Bertini/).
+
--For Bertini output files please refer to ApCoCoA directory/Bertini.
 
</example>
 
</example>
 
   
 
   

Revision as of 13:26, 12 May 2010

Bertini.BPCSolve

find witness point supersets of a positive dimensional homogeneous or non-homogeneous polynomial systems of equations. 

Syntax

Bertini.BPCSolve(M:LIST, SysTyp:STRING ,  ConfigSet:LIST):LIST

Description


Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.


  • @param P: List of polynomials of the given system.

  • @param SysTyp: Type of polynomials in the system P. Homogeneous ("hom") or nonhomogeneous ("Nhom").

  • @param ConfigSet: List of strings representing configurations to be used. Bertini uses multiple configuration settings. These configurations should be provided by the user. If you want to use default configurations then set ConfigSet := ["TRACKTYPE: 1"]. If you want to provide specific configurations then simply add them to ConfigSet. For details about configuration settings see Bertini manual http://www.nd.edu/~sommese/bertini/BertiniUsersManual.pdf.

  • @return A list of lists containing witness point supersets.

Example

-- An example of homogeneous positive dimensional solving with default configurations.
-- We want to solve a positive dimensional homogeneous system x^2-wy=0, x^3-zw^2=0.

Use S ::= QQ[x,y,z,w];        
P := [x^2-wy, x^3-zw^2];
SysTyp := <quotes>hom</quotes>;
ConfigSet := [<quotes>TRACKTYPE: 1</quotes>];

-- Then we compute the solution with
Bertini.BPCSolve(P,SysTyp,ConfigSet);

-- And we achieve a list of lists containing witness point supersets.
----------------------------------------
[
[
Vector(-755572432434347/12500000000000000, 1212469385646449/500000000000000000),
 Vector(1298004943638751/5000000000000000, -1142577751598529/10000000000000000), 
Vector(-2342040006871913/2500000000000000, 1179799639878209/1250000000000000),
 Vector(609385691937087/50000000000000000, 211745411898973/50000000000000000)
],
 [
Vector(1261061851901631/2500000000000000, 2488819338268271/5000000000000000),
 Vector(2282600091308383/5000000000000000, -1003166917277761/5000000000000000),
 Vector(-1266611634699783/100000000000000000, -3506599942546397/10000000000000000),
 Vector(-245572945934717/625000000000000, 2318280651577719/2500000000000000)
],
 [
Vector(-5499850009487371/10000000000000000, -1238476107570149/1000000000000000), 
Vector(1731610073705601/2000000000000000, -4674149620192353/10000000000000000),
 Vector(966993267243377/2500000000000000, 1501592012502773/2500000000000000),
 Vector(-1758972965024007/1000000000000000, 6238313035434359/10000000000000000)
], 
[
Vector(-1674674005500441/50000000000000000000000000000000, -139223041258509/4000000000000000000000000000000),
 Vector(2733406006983317/10000000000000000, -210607026124287/2000000000000000),
 Vector(-918496799516071/1000000000000000, 1142768401415781/1250000000000000),
 Vector(13944005158723/1250000000000000000000000000000, -3407948311604289/100000000000000000000000000000000)
]
]


--For Bertini output files please refer to ApCoCoA directory/Bertini.


Example

-- An example of homogenous positive dimensional solving with user configurations.
-- We want to solve a positive dimensional homogenous polynomial system x^2-wy=0, x^3-zw^2=0, for fixed higher precision.

Use S ::= QQ[x,y,z,w];            
P := [x^2-wy, x^3-zw^2];
SysTyp := <quotes>hom</quotes>;
ConfigSet := [<quotes>TRACKTYPE: 1</quotes>, <quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>];

-- Then we compute the solution with
Bertini.BPCSolve(P,SysTyp,ConfigSet);

-- And we achieve a list of lists containing witness point supersets.
----------------------------------------
[
[
Vector(-3789467495454911613823851164626681463651/10000000000000000000000000000000000000000,
 1200734725407166211921788902942849185503/1000000000000000000000000000000000000000),
 Vector(-246001393466366309986866914393676541221/125000000000000000000000000000000000000,
 -279722792064708736248520972068122497257/500000000000000000000000000000000000000),
 Vector(4083988954899604873030242779673433634501/5000000000000000000000000000000000000000,
 -1611351492565067582850937617799756261201/500000000000000000000000000000000000000),
 Vector(7319342772891341731507480575523588267957/10000000000000000000000000000000000000000,
 19870617690036348352514491511362841819/78125000000000000000000000000000000000)
],
 [
Vector(3048866987455758258878751406208402973051/10000000000000000000000000000000000000000,
 -2898035102105205140344370335032912017083/5000000000000000000000000000000000000000),
 Vector(-5539460172405722710678127397246600460333/10000000000000000000000000000000000000000,
 626442207647239461619975960511872586713/5000000000000000000000000000000000000000),
 Vector(986380263365471019267174885767305829617/2500000000000000000000000000000000000000,
 736987741407866469670001545005869554379/2500000000000000000000000000000000000000),
 Vector(1400107689781321399920833229898425820819/5000000000000000000000000000000000000000,
 2191732091470400698700321524968735909/3125000000000000000000000000000000000)
],
 [
Vector(354996962262331142136973979259558150991/400000000000000000000000000000000000000,
 1816598489416934847206968307485748462499/1000000000000000000000000000000000000000),
 Vector(1967511413109990263685197237623604100867/1000000000000000000000000000000000000000,
 1727412577136936817572423873769337954923/1000000000000000000000000000000000000000),
 Vector(803360350133974614907008034061208613233/250000000000000000000000000000000000000,
 1081558694105850161535777129438751374871/1000000000000000000000000000000000000000),
 Vector(9143301947447558293770285751969676840889/100000000000000000000000000000000000000000,
 155856385824660750993297595625859090071/100000000000000000000000000000000000000)
],
 [
Vector(-825065032224960020386592540685453030181/50000000000000000000000000000000000000000000000000000000000000000000000000,
 -870815934189224420445215323683468742119/50000000000000000000000000000000000000000000000000000000000000000000000000),
 Vector(-2670487187708557160891411850766573823343/1000000000000000000000000000000000000000,
 2412331000084757896737353053811227631099/2500000000000000000000000000000000000000),
 Vector(-2260897026243730139776564722393608088003/1000000000000000000000000000000000000000,
 -5881973549623185468407939053314195499303/10000000000000000000000000000000000000000),
 Vector(-6276316819449156764984023481918376370437/1000000000000000000000000000000000000000000000000000000000000000000000000000,
 -457717591175786069863350181676761297761/25000000000000000000000000000000000000000000000000000000000000000000000000)
]
]

--For Bertini output files please refer to ApCoCoA directory/Bertini.




See also

Introduction to CoCoAServer

Bertini.BSolve

Bertini.BPMCSolve