Difference between revisions of "ApCoCoA-1:Bertini.BZCSolve"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
 
<title>Bertini.BZCSolve</title>
 
<title>Bertini.BZCSolve</title>
<short_description>Solves zero dimensional homogeneous or non-homogeneous polynomial systems with user defined configurations.</short_description>
+
<short_description>Solves a zero dimensional homogeneous or non-homogeneous polynomial system of equations with user defined configurations.</short_description>
 
<syntax>
 
<syntax>
Bertini.BZCSolve(M:LIST, SysTyp:STRING ,  ConfigSet:LIST):LIST
+
Bertini.BZCSolve(P:LIST, SysTyp:STRING ,  ConfigSet:LIST):LIST
 
</syntax>
 
</syntax>
 
<description>
 
<description>
Line 9: Line 9:
  
 
<itemize>
 
<itemize>
<item>@param <em>M</em>: List of polynomials in the system.</item>
+
<item>@param <em>P</em>: List of polynomials of the system.</item>
  
<item>@param <em>SysTyp</em>: Type of polynomials in the system. Homogeneous (<tt>hom</tt>) or non-homogeneous (<tt>Nhom</tt>).</item>
+
<item>@param <em>SysTyp</em>: Type of polynomials in the List P. Homogeneous (<tt><quotes>hom</quotes></tt>) or non-homogeneous (<tt><quotes>Nhom</quotes></tt>).</item>
  
<item>@param <em>ConfigSet</em>: List of strings representing configurations to be used by Bertini. For details about configuration settings see Bertini manual <tt>http://www.nd.edu/~sommese/bertini/BertiniUsersManual.pdf</tt>.</item>
+
<item>@param <em>ConfigSet</em>: List of strings representing configurations to be used. Bertini uses multiple configuration settings. These configurations should be provided by the user. For details about configuration settings see Bertini manual <tt>http://www.nd.edu/~sommese/bertini/BertiniUsersManual.pdf</tt>.</item>
<item>@return A list of lists containing the finite (or real) solutions of the polynomial system.</item>
+
<item>@return A list of lists containing the finite (or real) solutions of the polynomial system P.</item>
  
 
</itemize>
 
</itemize>
 
   
 
   
 
<example>
 
<example>
-- Zero dimensional Non-homogenous solving with fixed higher precision
+
-- An example of zero dimensional Non-homogenous solving with fixed higher precision.
-- We want to solve zero dimensional non-homogenous system x^2+y^2-5=0, xy-2=0, for fixed higher precision.  
+
-- We want to solve the zero dimensional non-homogenous system x^2+y^2-5=0, xy-2=0, for fixed higher precision.  
  
Use S ::= QQ[x,y];             --  Define appropriate ring
+
Use S ::= QQ[x,y];          
M := [x^2+y^2-5,xy-2];
+
P := [x^2+y^2-5,xy-2];
 
SysTyp := <quotes>Nhom</quotes>;
 
SysTyp := <quotes>Nhom</quotes>;
 
ConfigSet := [<quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>];
 
ConfigSet := [<quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>];
  
 
-- Then we compute the solution with
 
-- Then we compute the solution with
Bertini.BZCSolve(M,SysTyp,ConfigSet);
+
Bertini.BZCSolve(P,SysTyp,ConfigSet);
  
-- And we achieve a list of lists containing all finite solutions:
+
-- And we achieve a list of lists containing all finite solutions.
 
----------------------------------------
 
----------------------------------------
 
[[Vector(500000000000000870080079571456753631209/500000000000000000000000000000000000000,  
 
[[Vector(500000000000000870080079571456753631209/500000000000000000000000000000000000000,  
Line 49: Line 49:
 
  -409661331378413177493500945204322606473/250000000000000000000000000000000000000000000000000000)]]
 
  -409661331378413177493500945204322606473/250000000000000000000000000000000000000000000000000000)]]
  
--For other Bertini output files please refer to Bertini directory (.../ApCoCoA-1.2/Bertini/).
+
--The elements of lists are vectors. Each vector represents a complex number. For example Vector(5000/1000,-4150/1000) represents the complex number 5000/1000-4150/1000i
 +
--For other Bertini output files please refer to ApCoCoA directory/Bertini.
 
</example>
 
</example>
  
 
   
 
   
 
<example>
 
<example>
-- Zero dimensional homogenous solving with fixed higher precision
+
-- An example of zero dimensional homogenous solving with fixed higher precision
-- We want to solve zero dimensional homogenous system x^2-z^2=0, xy-z^2=0, for fixed higher precision.  
+
-- We want to solve the zero dimensional homogenous system x^2-z^2=0, xy-z^2=0, for fixed higher precision.  
  
Use S ::= QQ[x,y];             --  Define appropriate ring
+
Use S ::= QQ[x,y];          
M := [x^2-z^2, xy-z^2];
+
P := [x^2-z^2, xy-z^2];
 
SysTyp := <quotes>hom</quotes>;
 
SysTyp := <quotes>hom</quotes>;
 
ConfigSet := [<quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>];
 
ConfigSet := [<quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>];
  
 
-- Then we compute the solution with
 
-- Then we compute the solution with
Bertini.BZCSolve(M,SysTyp,ConfigSet);
+
Bertini.BZCSolve(P,SysTyp,ConfigSet);
  
-- And we achieve a list of lists containing all real solutions:
+
-- And we achieve a list of lists containing all real solutions.
 
----------------------------------------
 
----------------------------------------
 
[[-1121226775607053112950715616047234987919/100000000000000000000000000000000000000000,
 
[[-1121226775607053112950715616047234987919/100000000000000000000000000000000000000000,
Line 80: Line 81:
 
  -4210800092649494941547012623104854361/31250000000000000000000000000000000000000000000000]]
 
  -4210800092649494941547012623104854361/31250000000000000000000000000000000000000000000000]]
  
--For other Bertini output files please refer to Bertini directory (.../ApCoCoA-1.2/Bertini/).
+
--For other Bertini output files please refer to ApCoCoA directory/Bertini.
 
</example>
 
</example>
  

Revision as of 09:12, 12 May 2010

Bertini.BZCSolve

Solves a zero dimensional homogeneous or non-homogeneous polynomial system of equations with user defined configurations.

Syntax

Bertini.BZCSolve(P:LIST, SysTyp:STRING ,  ConfigSet:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param P: List of polynomials of the system.

  • @param SysTyp: Type of polynomials in the List P. Homogeneous ("hom") or non-homogeneous ("Nhom").

  • @param ConfigSet: List of strings representing configurations to be used. Bertini uses multiple configuration settings. These configurations should be provided by the user. For details about configuration settings see Bertini manual http://www.nd.edu/~sommese/bertini/BertiniUsersManual.pdf.

  • @return A list of lists containing the finite (or real) solutions of the polynomial system P.


Example

-- An example of zero dimensional Non-homogenous solving with fixed higher precision.
-- We want to solve the zero dimensional non-homogenous system x^2+y^2-5=0, xy-2=0, for fixed higher precision. 

Use S ::= QQ[x,y];           
P := [x^2+y^2-5,xy-2];
SysTyp := <quotes>Nhom</quotes>;
ConfigSet := [<quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>];

-- Then we compute the solution with
Bertini.BZCSolve(P,SysTyp,ConfigSet);

-- And we achieve a list of lists containing all finite solutions.
----------------------------------------
[[Vector(500000000000000870080079571456753631209/500000000000000000000000000000000000000, 
41243336046164965623860294533917  3594181/200000000000000000000000000000000000000000000000000000),
 Vector(199999999999999920289038441185562687901/100000000000000000000000000000000000000,
 -4918613303067726249865351347506841944303/5000000000000000000000000000000000000000000000000000000)],
 [Vector(999999999999996907691691548150283767063/500000000000000000000000000000000000000, 
4026821783991733021565024336088959292491/1000000000000000000000000000000000000000000000000000000),
 Vector(1000000000000008119524837615406734621127/1000000000000000000000000000000000000000,
 -9202828375000265851232972557923998357683/1000000000000000000000000000000000000000000000000000000)],
 [Vector(-1999999999999981470621955122058645854307/1000000000000000000000000000000000000000, 
 -2219296880596437220953595963738223862847/100000000000000000000000000000000000000000000000000000), 
Vector(-1000000000000016429280952166817619195409/1000000000000000000000000000000000000000,
 2246895233251384601549113345810086172711/100000000000000000000000000000000000000000000000000000)],
 [Vector(-9999999999999986714415752390569533003343/10000000000000000000000000000000000000000,
 2376331150450927561422763997224327498341/1000000000000000000000000000000000000000000000000000000), 
Vector(-200000000000000126515279556718539177417/100000000000000000000000000000000000000,
 -409661331378413177493500945204322606473/250000000000000000000000000000000000000000000000000000)]]

--The elements of lists are vectors. Each vector represents a complex number. For example Vector(5000/1000,-4150/1000) represents the complex number 5000/1000-4150/1000i
--For other Bertini output files please refer to ApCoCoA directory/Bertini.


Example

-- An example of zero dimensional homogenous solving with fixed higher precision
-- We want to solve the zero dimensional homogenous system x^2-z^2=0, xy-z^2=0, for fixed higher precision. 

Use S ::= QQ[x,y];           
P := [x^2-z^2, xy-z^2];
SysTyp := <quotes>hom</quotes>;
ConfigSet := [<quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>];

-- Then we compute the solution with
Bertini.BZCSolve(P,SysTyp,ConfigSet);

-- And we achieve a list of lists containing all real solutions.
----------------------------------------
[[-1121226775607053112950715616047234987919/100000000000000000000000000000000000000000,
 -1121226775607053112950715616047234987919/100000000000000000000000000000000000000000,
 -1121226775607053112950715616047234987919/100000000000000000000000000000000000000000],
 [-666269356331265789905402745641735631587/1250000000000000000000000000000000000000,
 -666269356331265789905402745641735631587/1250000000000000000000000000000000000000,
 666269356331265789905402745641735631587/1250000000000000000000000000000000000000],
 [-1961395985465574251430275441821775811231/20000000000000000000000000000000000000000000000000000,
 1604689603443950100804972123829819895459/2500000000000000000000000000000000000000,
 -9839275092234527567507618459170114455473/100000000000000000000000000000000000000000000000000000],
 [-1197970328164235882805480928545099670003/10000000000000000000000000000000000000000000000000000,
 3209379206887735502321156763919697536571/5000000000000000000000000000000000000000,
 -4210800092649494941547012623104854361/31250000000000000000000000000000000000000000000000]]

--For other Bertini output files please refer to ApCoCoA directory/Bertini.




See also

Introduction to CoCoAServer

Bertini.BCMSolve

Bertini.BMSolve

Bertini.BSolve

Bertini.BUHSolve