ApCoCoA-1:Thompson group

From ApCoCoAWiki
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Description

The Thompson group can be regarded as the group of piecewise-linear, orientation-preserving homeomorphisms of the unit interval which have breakpoints only at dyadic points and on intervals of differentiability the slopes are powers of two. A representation is given by:

  T = <a,b | [ab^{-1},a^{-1}ba] = [ab^{-1},a^{-2}ba^{2}] = 1>

or alternative:

  Th = <x_{0},x_{1},x_{2},... | x_{k}^{-1}x_{n}x_{k} = x_{n+1} for all k < n>

Reference

NEW PRESENTATIONS OF THOMPSON'S GROUPS AND APPLICATIONS: UFFE HAAGERUP AND GABRIEL PICIOROAGA

Computation

/*Use the ApCoCoA package ncpoly.*/

Use ZZ/(2)[a,b,c,d];
NC.SetOrdering("LLEX");

 Define CreateRelationsThompson()
  Relations:=[];
  
   // add the inverse relations
  Append(Relations,[[a,c],[1]]);
  Append(Relations,[[c,a],[1]]);
  Append(Relations,[[b,d],[1]]);
  Append(Relations,[[d,b],[1]]);
 
  //add the relation [ad,a^{-1}ba] = 1
  // the commutator of [ad,a^{-1}ba] is a,d,c,b,a,b,c,c,d,a
  Append(Relations,[[a,d,c,b,a,b,c,c,d,a],[1]]);
 
  //add the relation [ad,a^{-1}ba] = 1
  // the commutator of [ad,a^{-2}ba^2] is a,d,c,c,b,a,a,b,c,c^2,d,a^2
  Append(Relations,[[a,d,c,c,b,a,a,b,c,c^2,d,a^2],[1]]);
  
  Return Relations;
EndDefine;

Relations:=CreateRelationsThompson();
Relations;

Gb:=NC.GB(Relations,31,1,100,1000);
Gb;

Example in Symbolic Data Format

 <FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier">
 	<vars>a,b,c,d</vars>
 	<uptoDeg>11</uptoDeg>
 	<basis>
 	<ncpoly>a*c-1</ncpoly>
 	<ncpoly>c*a-1</ncpoly>
 	<ncpoly>b*d-1</ncpoly>
 	<ncpoly>d*b-1</ncpoly>
 	<ncpoly>a*d*c*b*a*b*c*c*d*a-1</ncpoly>
 	<ncpoly>a*d*c*c*b*a*a*b*c*c^2*d*a^2-1</ncpoly>
 	</basis>
 	<Comment>The partial LLex Gb has 393 elements</Comment>
 	<Comment>Thompson_group</Comment>
 </FREEALGEBRA>
 
 
 <Comment> Commutators
 [g,h] = ghg^{-1}h^{-1}
 [ad,cba]=a*d*c*b*a*b*c*c*d*a
 [ad,ccbaa]=a*d*c*c*b*a*a*b*c*c^2*d*a^2
 </Comment>

Alternative Computation

/*Use the ApCoCoA package ncpoly.*/
 
// Define the variable k,n of the thompson group
MEMORY.N:=5;

Use ZZ/(2)[x[1..MEMORY.N],y[1..MEMORY.N]];
NC.SetOrdering("LLEX");

Define CreateRelationsthomp()
  Relations:=[];
  For Index1 := 1 To MEMORY.N Do
    Append(Relations,[[x[Index1],y[Index1]],[1]]);
    Append(Relations,[[y[Index1],x[Index1]],[1]]);
  EndFor;
  
  For Index1 := 2 To MEMORY.N-1 Do
  For Index2 := 1 To MEMORY.N-2 Do
  If (Index1 > Index2) Then
    Append(Relations,[[y[Index2],x[Index1],x[Index2]],[x[Index1+1]]]);
  EndIf  
  EndFor;
  EndFor;
  Return Relations;
EndDefine;

Relations:=CreateRelationsthomp();
Relations;

Gb:=NC.GB(Relations,31,1,100,1000);
Gb;

Example in Symbolic Data Format

 <FREEALGEBRA createdAt="2014-03-28" createdBy="strohmeier">
 	<vars>x1,x2,x3,x4,x5,y1,y2,y3,y4,y5</vars>
 	<uptoDeg>4</uptoDeg>
 	<basis>
 	<ncpoly>x1*y1-1</ncpoly>
 	<ncpoly>y1*x1-1</ncpoly>
 	<ncpoly>x2*y2-1</ncpoly>
 	<ncpoly>y2*x2-1</ncpoly>
 	<ncpoly>x3*y3-1</ncpoly>
 	<ncpoly>y3*x3-1</ncpoly>
 	<ncpoly>x4*y4-1</ncpoly>
 	<ncpoly>y4*x4-1</ncpoly>
 	<ncpoly>x5*y5-1</ncpoly>
 	<ncpoly>y5*x5-1</ncpoly>
 	<ncpoly>y1*x2*x1-x3</ncpoly>
 	<ncpoly>y1*x3*x1-x4</ncpoly>
 	<ncpoly>y1*x4*x1-x5</ncpoly>
 	<ncpoly>y2*x3*x2-x4</ncpoly>
 	<ncpoly>y2*x4*x2-x5</ncpoly>
 	<ncpoly>y3*x4*x3-x5</ncpoly>
 	</basis>
 	<Comment>The partial LLex Gb has 126 elements</Comment>
 	<Comment>Thompson_group_alt5</Comment>
 </FREEALGEBRA>