# Difference between revisions of "ApCoCoA:CharP.GBasisF2"

From CoCoAWiki

(adding a description.) |
m (fixing formula) |
||

Line 6: | Line 6: | ||

</syntax> | </syntax> | ||

<description> | <description> | ||

− | This command computes a Groebner basis in the field <formula> \mathbb{F}_{2} = ( | + | This command computes a Groebner basis in the field <formula> \mathbb{F}_{2} = (\smathbb{Z}_{\setminus(2)} </formula>. It uses the ApCoCoA Server and the ApCoCoALib's class [[ApCoCoALib:RingF2|RingF2]]. |

The command's input is a an Ideal in a Ring over Z, where the elements 0,..., 1 represent the field's elements. Details on this representation can be found [[ApCoCoA:Representation_of_finite_fields|here]]. | The command's input is a an Ideal in a Ring over Z, where the elements 0,..., 1 represent the field's elements. Details on this representation can be found [[ApCoCoA:Representation_of_finite_fields|here]]. |

## Revision as of 20:57, 30 March 2008

<command> <title>Char2.GBasisF2</title> <short_description>computing a gbasis of a given ideal in <formula>\mathbb{F}_{2}</formula></short_description>

<syntax> $char2.GBasisF2(Ideal):List </syntax>

<description>

This command computes a Groebner basis in the field <formula> \mathbb{F}_{2} = (\smathbb{Z}_{\setminus(2)} </formula>. It uses the ApCoCoA Server and the ApCoCoALib's class RingF2.

The command's input is a an Ideal in a Ring over Z, where the elements 0,..., 1 represent the field's elements. Details on this representation can be found here.

</description> <seealso> <see>GBasis</see> <see>char2.GBasisF4</see> <see>char2.GBasisF8</see> <see>char2.GBasisF16</see> <see>char2.GBasisF32</see> <see>char2.GBasisF64</see> <see>char2.GBasisF128</see> <see>char2.GBasisF256</see> <see>char2.GBasisF512</see> <see>char2.GBasisF1024</see> <see>char2.GBasisF2048</see> <see>char2.GBasisF4096</see> <see>char2.GBasisModSquares</see> </seealso> <key>heldt</key> <key>char2.GBasisF2</key> <wiki-category>Package_char2</wiki-category> </command>