ApCoCoA-1:NC.LW
This article is about a function from ApCoCoA-1. |
NC.LW
The leading word (or term) of a non-zero polynomial in a non-commutative polynomial ring.
Syntax
NC.LW(F:LIST):LIST NC.LT(F:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.
@param F: a non-zero non-commutative polynomial. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a LIST, which is the leading word of F with respect to the current word ordering.
Example
USE QQ[x[1..2]]; F:= [[x[1]^2], [2x[1],x[2]], [3x[2],x[1]],[4x[2]^2]]; -- x[1]^2+2x[1]x[2]+3x[2]x[1]+4x[2]^2 NC.SetOrdering("LLEX"); NC.LW(F); [x[1]^2] ------------------------------- -- Done. ------------------------------- NC.SetOrdering("LRLEX"); NC.LW(F); [x[2]^2] ------------------------------- -- Done. ------------------------------- NC.SetOrdering("ELIM"); NC.LW(F); [x[1]^2] ------------------------------- -- Done. ------------------------------- NC.SetOrdering("DEGRLEX"); NC.LT(F); [x[1]^2] -------------------------------
See also