ApCoCoA-1:NC.KernelOfHomomorphism

From ApCoCoAWiki
Revision as of 15:33, 8 June 2012 by Xiu (talk | contribs)

NC.KernelOfHomomorphism

Enumerate a (partial) Groebner basis of the kernel of a K-algebra homomorphism.

Syntax

NC.KernelOfHomomorphism(X1:STRING, X2:STRING, Images:LIST):LIST
NC.KernelOfHomomorphism(X1:STRING, X2:STRING, Images:LIST, DegreeBound:INT, LoopBound:INT, Flag:INT):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set the coefficient field K via the function NC.SetFp before calling the function. The default coefficient field is Q. For more information, please check the relevant function.

  • @param X1: a finite alphabet or finite set of indeterminates. It is of STRING type. Note that every letter in X1 MUST appear only once.The order of letters in X1 is very important, since X1 together with Images determinates a K-algebra homomorphism.

  • @param X2: another finite alphabet or finite set of indeterminates. It is of STRING type. Note that X1 and X2 are disjoint.

  • @param Images: a LIST of polynomials in K<X2>. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <X2> and C is the coefficient of W. For example, the polynomial F=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. The zero polynomial 0 is represented as the empty LIST []. Note that the number of polynomials in Images should be equal to the number of letters in X1. Also note that the order of polynomials in Images is very important, since Images together with X1 defines a K-algebra homomorphism. For example, X1:="abc"; X2:="xy"; F1 := [[1,"x"], [1,"y"]]; F2 := [[1,"xx"],[1,"xy"]]; F3 := [[1,"yy"],[1,"yx"]]; Images := [F1, F2, F3]; then the K-algebra homomorphism is defined by mapping a to F1, b to F2 and c to F3.

Since this function is based on Groebner basis computations, we refer users to NC.GB or NC.ReducedGB for information about the following three optional parameters:

  • @param DegreeBound

  • @param LoopBound

  • @param Flag

  • @return: a LIST of polynomials, which is a Groebner basis of the kernel of the K-algebra homomorphism if a finite Groebner basis exists, and is a partial Groebner basis otherwise.

Example

X1 := <quotes>abc</quotes>; 
X2 := <quotes>xy</quotes>; 
F1 := [[1,<quotes>x</quotes>], [1,<quotes>y</quotes>]]; 
F2 := [[1,<quotes>xx</quotes>],[1,<quotes>xy</quotes>]]; 
F3 := [[1,<quotes>yy</quotes>],[1,<quotes>yx</quotes>]]; 
Images :=[F1, F2, F3]; -- a |-> F1; b |-> F2; c |-> F3 
NC.KernelOfHomomorphism(X1, X2, Images);
[[[1, <quotes>ab</quotes>], [-1, <quotes>ba</quotes>], [1, <quotes>ac</quotes>], [-1, <quotes>ca</quotes>]], [[1, <quotes>aa</quotes>], [-1, <quotes>b</quotes>], [-1, <quotes>c</quotes>]]]
-------------------------------

See also

NC.Add

NC.Deg

NC.FindPolynomials

NC.GB

NC.HF

NC.Interreduction

NC.Intersection

NC.IsFinite

NC.IsGB

NC.IsHomog

NC.KernelOfHomomorphism

NC.LC

NC.LT

NC.LTIdeal

NC.MB

NC.MinimalPolynomial

NC.Multiply

NC.NR

NC.ReducedGB

NC.SetFp

NC.SetOrdering

NC.SetRelations

NC.SetRules

NC.SetX

NC.Subtract

NC.TruncatedGB

NC.UnsetFp

NC.UnsetOrdering

NC.UnsetRelations

NC.UnsetRules

NC.UnsetX

Introduction to CoCoAServer