Difference between revisions of "ApCoCoA-1:Bertini.BSolve"
From ApCoCoAWiki
Line 44: | Line 44: | ||
For summary of all solutions refer to ApCoCoAServer. | For summary of all solutions refer to ApCoCoAServer. | ||
+ | </example> | ||
+ | <example> | ||
+ | -- Zero Dimensional Homogenous Solving | ||
+ | -- We want to solve zero dimensional homogenous system x^2-z^2=0, xy-z^2=0. | ||
+ | |||
+ | Use S ::= QQ[x,y,z]; -- Define appropriate ring | ||
+ | M := [x^2-z^2, xy-z^2]; | ||
+ | SysTyp := "hom"; | ||
+ | |||
+ | -- Then we compute the solution with | ||
+ | $Bertini.BSolve(M,SysTyp); | ||
+ | |||
+ | -- And we achieve: | ||
+ | ---------------------------------------- | ||
+ | The number of real solutions are: | ||
+ | 4 | ||
+ | The real solutions are: | ||
+ | |||
+ | |||
+ | 4.750270171019972e-01 7.277175694441498e-01 | ||
+ | 4.750270171019972e-01 7.277175694441498e-01 | ||
+ | 4.750270171019972e-01 7.277175694441498e-01 | ||
+ | |||
+ | -1.161874166440340e+00 -1.121939725361908e+00 | ||
+ | -1.161874166440340e+00 -1.121939725361908e+00 | ||
+ | 1.161874166440340e+00 1.121939725361908e+00 | ||
+ | |||
+ | -1.213218743783253e-14 9.540042296620362e-14 | ||
+ | 1.297490331797821e+00 -3.349764345312171e-01 | ||
+ | -9.696352192508132e-14 -3.162549982974766e-13 | ||
+ | |||
+ | |||
+ | -2.845295858183006e-14 1.079961801218032e-13 | ||
+ | 1.297490331797885e+00 -3.349764345312022e-01 | ||
+ | -9.799048563439788e-14 -3.558617333271439e-13 | ||
+ | |||
+ | For summary of all solutions refer to ApCoCoAServer | ||
+ | |||
+ | ------------------------------------ | ||
</example> | </example> | ||
Revision as of 08:46, 20 April 2009
BSolve
Solves zero dimensional Homogenous or Non-Homogenous polynomial system with Default Configurations.
Syntax
Bertini.BSolve(M:LIST, SysTyp:STRING)
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them.
M: List of polynomials in the system to be solved.
SysTyp: Type of the system to be solved. Homogeneous ("hom") or nonhomogeneous ("Nhom").
Example
-- Zero Dimensional Non-Homogenous Solving -- We want to solve zero dimensional non-homogenous system x^2+y^2-5=0, xy-2=0. Use S ::= QQ[x,y]; -- Define appropriate ring M := [x^2+y^2-5, xy-2]; SysTyp := "Nhom"; -- Then we compute the solution with $Bertini.BSolve(M,SysTyp); -- And we achieve: ---------------------------------------- The number of real finite solutions are: 4 The real finite solutions are: 2.000000000000052e+00 -1.207721921243940e-14 9.999999999999164e-01 1.727395183148409e-14 -9.999999999999680e-01 -1.380221440309691e-14 -2.000000000000005e+00 -8.389594590085023e-15 9.999999999999293e-01 2.686603221243866e-14 2.000000000000473e+00 4.530296702485832e-13 -2.000000000000031e+00 -1.809322618557695e-15 -9.999999999999383e-01 -2.558999563654189e-15 For summary of all solutions refer to ApCoCoAServer.
Example
-- Zero Dimensional Homogenous Solving -- We want to solve zero dimensional homogenous system x^2-z^2=0, xy-z^2=0. Use S ::= QQ[x,y,z]; -- Define appropriate ring M := [x^2-z^2, xy-z^2]; SysTyp := "hom"; -- Then we compute the solution with $Bertini.BSolve(M,SysTyp); -- And we achieve: ---------------------------------------- The number of real solutions are: 4 The real solutions are: 4.750270171019972e-01 7.277175694441498e-01 4.750270171019972e-01 7.277175694441498e-01 4.750270171019972e-01 7.277175694441498e-01 -1.161874166440340e+00 -1.121939725361908e+00 -1.161874166440340e+00 -1.121939725361908e+00 1.161874166440340e+00 1.121939725361908e+00 -1.213218743783253e-14 9.540042296620362e-14 1.297490331797821e+00 -3.349764345312171e-01 -9.696352192508132e-14 -3.162549982974766e-13 -2.845295858183006e-14 1.079961801218032e-13 1.297490331797885e+00 -3.349764345312022e-01 -9.799048563439788e-14 -3.558617333271439e-13 For summary of all solutions refer to ApCoCoAServer ------------------------------------