Difference between revisions of "ApCoCoA-1:NC.Interreduction"

From ApCoCoAWiki
Line 18: Line 18:
 
</itemize>
 
</itemize>
 
<example>
 
<example>
NC.SetX(<quotes>abc</quotes>);
+
USE QQ[x[1..2],y[1..2]];
NC.SetOrdering(<quotes>ELIM</quotes>);
+
NC.SetOrdering("LLEX");
G:=[[[1,<quotes>ba</quotes>]], [[1,<quotes>b</quotes>],[1,<quotes></quotes>]], [[1,<quotes>c</quotes>]]];
+
F1:= [[x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3],[5]]; -- x[1]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5
NC.Interreduction(G);
+
F2:= [[y[1],x[2]^2], [y[2],x[2]^2]]; -- y[1]x[2]^2+y[2]x[2]^2
 +
F3:= [[x[1],y[1]],[x[2]]]; -- x[1]y[1]+x[2]
 +
NC.Interreduction([F1,F2,F3]);
  
[[[1, <quotes>a</quotes>]], [[1, <quotes>b</quotes>], [1, <quotes></quotes>]], [[1, <quotes>c</quotes>]]]
+
[[[y[2], x[1]^2, x[2]^3], [1/9x[1], y[2], x[2]^2], [-5/9]], [[y[1], x[2]^2], [y[2], x[2]^2]], [[x[1], y[1]], [x[2]]]]
 
-------------------------------
 
-------------------------------
 
</example>
 
</example>

Revision as of 17:57, 3 May 2013

NC.Interreduction

Interreduction of a LIST of polynomials in a non-commutative polynomial ring.

Note that, given a word ordering, a set of non-zero polynomial G is called interreduced if, for all g in G, no element of Supp(g) is a multiple of any element in LW{G\{g}}.

Syntax

NC.Interreduction(G:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.

  • @param G: a LIST of non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].

  • @return: a LIST, which is an interreduced set of G.

Example

USE QQ[x[1..2],y[1..2]];
NC.SetOrdering("LLEX");
F1:= [[x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3],[5]]; -- x[1]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5
F2:= [[y[1],x[2]^2], [y[2],x[2]^2]]; -- y[1]x[2]^2+y[2]x[2]^2
F3:= [[x[1],y[1]],[x[2]]]; -- x[1]y[1]+x[2]
NC.Interreduction([F1,F2,F3]);

[[[y[2], x[1]^2, x[2]^3], [1/9x[1], y[2], x[2]^2], [-5/9]], [[y[1], x[2]^2], [y[2], x[2]^2]], [[x[1], y[1]], [x[2]]]]
-------------------------------

See also

Use

NC.LW

NC.SetOrdering

Introduction to CoCoAServer