Difference between revisions of "ApCoCoA-1:BBSGen.LinIndepGen"

From ApCoCoAWiki
m (Andraschko moved page BBSGen.LinIndepGen to ApCoCoA-1:BBSGen.LinIndepGen without leaving a redirect: moving into ApCoCoA namespace)
m (Bot: Category moved)
Line 52: Line 52:
 
   <key>BBSGen.LinIndepGen</key>
 
   <key>BBSGen.LinIndepGen</key>
 
   <key>bbsmingensys.LinIndepGen</key>
 
   <key>bbsmingensys.LinIndepGen</key>
   <wiki-category>Package_bbsmingensys</wiki-category>
+
   <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category>
 
</command>
 
</command>

Revision as of 11:37, 3 October 2020

BBSGen.LinIndepGen

Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). This function computes the equivalent indeterminates from K[c_11,...,c_Mu Nu] modulo m^2, where m is the maximal ideal generated by the indeterminates {c_11,...,c_Mu Nu} from the coordinate ring of the border basis scheme. As out-put, it gives every equivalence class as a list.

Syntax

BBSGen.LinIndepGen(OO):
BBSGen.LinIndepGen(OO:LIST):LIST

Description


  • @param The order ideal OO.

  • @return The list of classes of indeterminates modulo m^2.


Example

Use R::=QQ[x,y];
OO:=[1,x,y,xy];
BO:=BB.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);

BBSGen.LinIndepGen(OO); 


[[[3, 3], [1, 1]], [[1, 2], [2, 4]], [[4, 3], [2, 1]], [[2, 2]], [[3, 1]], [[4, 4], [3, 2]], [4, 2], [4, 1]]

Class:=BBSGen.LinIndepGen(OO); 

Use BBS::=CoeffRing[c[1..Mu,1..Nu]]; 

BBSGen.IndFinder(Class,Mu,Nu);

[[c[3,3], c[1,1]], [c[1,2], c[2,4]], [c[4,3], c[2,1]], c[2,2], c[3,1], [c[4,4], c[3,2]], c[4,1], c[4,2]]
-------------------------------
-------------------------------




BBSGen.PurPow