Difference between revisions of "ApCoCoA-1:BBSGen.LinIndepGen"
From ApCoCoAWiki
Andraschko (talk | contribs) m (Andraschko moved page BBSGen.LinIndepGen to ApCoCoA-1:BBSGen.LinIndepGen without leaving a redirect: moving into ApCoCoA namespace) |
m (Bot: Category moved) |
||
Line 52: | Line 52: | ||
<key>BBSGen.LinIndepGen</key> | <key>BBSGen.LinIndepGen</key> | ||
<key>bbsmingensys.LinIndepGen</key> | <key>bbsmingensys.LinIndepGen</key> | ||
− | <wiki-category>Package_bbsmingensys</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category> |
</command> | </command> |
Revision as of 11:37, 3 October 2020
BBSGen.LinIndepGen
Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). This function computes the equivalent indeterminates from K[c_11,...,c_Mu Nu] modulo m^2, where m is the maximal ideal generated by the indeterminates {c_11,...,c_Mu Nu} from the coordinate ring of the border basis scheme. As out-put, it gives every equivalence class as a list.
Syntax
BBSGen.LinIndepGen(OO): BBSGen.LinIndepGen(OO:LIST):LIST
Description
@param The order ideal OO.
@return The list of classes of indeterminates modulo m^2.
Example
Use R::=QQ[x,y]; OO:=[1,x,y,xy]; BO:=BB.Border(OO); Mu:=Len(OO); Nu:=Len(BO); BBSGen.LinIndepGen(OO); [[[3, 3], [1, 1]], [[1, 2], [2, 4]], [[4, 3], [2, 1]], [[2, 2]], [[3, 1]], [[4, 4], [3, 2]], [4, 2], [4, 1]] Class:=BBSGen.LinIndepGen(OO); Use BBS::=CoeffRing[c[1..Mu,1..Nu]]; BBSGen.IndFinder(Class,Mu,Nu); [[c[3,3], c[1,1]], [c[1,2], c[2,4]], [c[4,3], c[2,1]], c[2,2], c[3,1], [c[4,4], c[3,2]], c[4,1], c[4,2]] ------------------------------- -------------------------------