Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzLinStep"
From ApCoCoAWiki
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title>BBSGen. | + | <title>BBSGen.TraceSyzLinStep</title> |
<short_description>: This function computes the K[c]-linear summand of the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see <ref>BBSGen.TraceSyzFull</ref>) | <short_description>: This function computes the K[c]-linear summand of the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see <ref>BBSGen.TraceSyzFull</ref>) | ||
</short_description> | </short_description> | ||
Line 6: | Line 6: | ||
<syntax> | <syntax> | ||
− | BBSGen. | + | BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N); |
− | BBSGen. | + | BBSGen.TraceSyzLinStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST |
</syntax> | </syntax> | ||
<description> | <description> |
Revision as of 10:09, 18 June 2012
BBSGen.TraceSyzLinStep
- This function computes the K[c]-linear summand of the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see BBSGen.TraceSyzFull)
Syntax
BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N); BBSGen.TraceSyzLinStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST
Description
Note the following: The chosen variable must be a divisor of the term Pi other wise the result is 0. Pi must be a product of at least two different indeterminates.
@param The term Pi, the distinguished variable of choice that divides Pi, order ideal OO, border BO, the number of Indeterminates of the polynomial ring K[x_1,...,x_N].
@return K[c]-linear summand of the trace polynomial with respect to Pi and the variable X.
Example
Use R::=QQ[x[1..2]]; OO:=$apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Pi:=x[1]^2x[2]; X:=x[1]; ------------Choice of the Variable Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N); t[1,2,1,3] + t[1,2,2,4] -------------------------------