Difference between revisions of "ApCoCoA-1:BBSGen.JacobiFull"
m (insert version info) |
|||
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
− | <title>BBSGen. | + | <title>BBSGen.JacobiFull</title> |
− | <short_description>Let R:=K[x_1,...,x_N]. This function computes the entries of the Jacobi identity matrix J^klm [ A_m[A_k,A_l]]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] | + | <short_description>Let R:=K[x_1,...,x_N]. This function computes the entries of the Jacobi identity matrix J^klm [ A_m[A_k,A_l]]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ], where m,k,l is from {1...N}. </short_description> |
<syntax> | <syntax> | ||
Line 10: | Line 11: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Let R=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let | + | Let R=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l \in {1,..,N}. |
− | This function computes the entries of the Jacobi identity J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] , where m,k,l is from {1...n}. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j] | + | This function computes the entries of the Jacobi identity J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] , where m,k,l is from {1...n}. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j] in K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]. |
When the polynomial entries of the above matrix are large, one may not have a result. In that case we recommend JacobiStep or JacobiLin. | When the polynomial entries of the above matrix are large, one may not have a result. In that case we recommend JacobiStep or JacobiLin. | ||
Line 47: | Line 48: | ||
</description> | </description> | ||
<types> | <types> | ||
− | <type> | + | <type>bbsmingensys</type> |
− | <type> | + | <type>list</type> |
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
</types> | </types> | ||
− | <see>BBSGen.JacobiStep</see> | + | <see>ApCoCoA-1:BBSGen.JacobiStep|BBSGen.JacobiStep</see> |
− | <see>BBSGen.JacobiLin</see> | + | <see>ApCoCoA-1:BBSGen.JacobiLin|BBSGen.JacobiLin</see> |
− | + | <key>JacobiFull</key> | |
− | + | <key>BBSGen.JacobiFull</key> | |
− | <key>BBSGen. | + | |
− | + | <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category> | |
− | <wiki-category>Package_bbsmingensys</wiki-category> | ||
</command> | </command> |
Latest revision as of 09:50, 7 October 2020
This article is about a function from ApCoCoA-1. |
BBSGen.JacobiFull
Let R:=K[x_1,...,x_N]. This function computes the entries of the Jacobi identity matrix J^klm [ A_m[A_k,A_l]]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ], where m,k,l is from {1...N}.
Syntax
BBSGen.JacobiFull(OO,BO,N); BBSGen.JacobiFull(OO:LIST,BO:LIST,N:INTEGER):MATRIX
Description
Let R=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l \in {1,..,N}.
This function computes the entries of the Jacobi identity J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] , where m,k,l is from {1...n}. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j] in K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]].
When the polynomial entries of the above matrix are large, one may not have a result. In that case we recommend JacobiStep or JacobiLin.
Please note that this function does not work for the case, where N=2.
@param Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].
@return The entries of the Jacobi Identity J^{ikl}. .
Example
Use R::=QQ[x[1..3]]; OO:=[1,x[1]]; BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.JacobiFull(OO,BO,N); [[ [c[1,1]t[1,2,1,1] + c[1,3]t[1,2,2,1] + c[1,2]t[1,3,1,1] + c[1,4]t[1,3,2,1] + c[1,5]t[2,3,2,1], c[1,1]t[1,2,1,2] + c[1,3]t[1,2,2,2] + c[1,2]t[1,3,1,2] + c[1,4]t[1,3,2,2] + c[1,5]t[2,3,2,2]], [ c[2,1]t[1,2,1,1] + c[2,3]t[1,2,2,1] + c[2,2]t[1,3,1,1] + c[2,4]t[1,3,2,1] + c[2,5]t[2,3,2,1] + t[2,3,1,1], c[2,1]t[1,2,1,2] + c[2,3]t[1,2,2,2] + c[2,2]t[1,3,1,2] + c[2,4]t[1,3,2,2] + c[2,5]t[2,3,2,2] + t[2,3,1,2]]]]