SB.SubalgebraPoly |
Syntax |
SB.SubalgebraPoly(Gens:LIST of POLY, SARepr:LIST of LIST of INT):POLY |
Description |
Example |
Use R::=QQ[x,y], DegLex; F:=x^4+x^3y+x^2y^2+y^4; G:=[x^2-y^2,x^2y,x^2y^2-y^4,x^2y^4,y^6x^2y^6-y^8]; L:=SB.NFS(G,F,TRUE); L; SB.SubalgebraPoly(G,L[2]); ------------------------------------------------------- -- output: [x^3y + 3x^2y^2, [[2, 0, 0, 0, 0, 1]]] ------------------------------- SARing :: y[1]^2 ------------------------------- -- Done. ------------------------------- |
Example |
Use R::=QQ[x,y], DegLex; F:=x^3+x^2y; G:=[x+y,xy]; L:=SB.NFS(G,F,TRUE); L; SB.SubalgebraPoly(G,L[2]); ------------------------------------------------------- -- output: [-xy^2 - y^3, [[3, 0, 1], [1, 1, -2]]] ------------------------------- SARing :: y[1]^3 - 2y[1]y[2] ------------------------------- -- Done. ------------------------------- |
Example |
Use R::=QQ[x,y], DegLex; F:=x^4y^2+x^2y^4; G:=[x^2-1,y^2-1]; L:=SB.NFS(G,F,TRUE); L; SB.SubalgebraPoly(G,L[2]); ------------------------------------------------------- -- output: [0, [[2, 1, 1], [1, 2, 1], [2, 0, 1], [1, 1, 4], [0, 2, 1], [1, 0, 3], [0, 1, 3], [0, 0, 2]]] ------------------------------- SARing :: y[1]^2y[2] + y[1]y[2]^2 + y[1]^2 + 4y[1]y[2] + y[2]^2 + 3y[1] + 3y[2] + 2 ------------------------------- -- Done. ------------------------------- |
See Also |