NC.SetFp(); -- set default Fp=F2
NC.SetX("xyz");
F1 := [[1,"xy"], [1,"z"]];
F2 := [[1,"yz"], [1, "x"]];
F3 := [[1,"zx"], [1,"y"]];
Ideal_I := [F1, F2]; -- ideal generated by {xy+z, yz+x}
Ideal_J := [F2, F3]; -- ideal generated by {yz+x, zx+y}
NC.Intersection(Ideal_I, Ideal_J, 20, 25, 1);
[[[1, "zyzzz"], [1, "zzzyz"], [1, "yzz"], [1, "zzy"]], [[1, "yzyz"], [1, "zyzy"]], [[1, "zyzyyz"], [1, "yzyy"], [1, "zzyz"], [1, "zy"]],
[[1, "yzzyzy"], [1, "yzyy"], [1, "zzyz"], [1, "zy"]], [[1, "zzzzyzyy"], [1, "zzyyzy"], [1, "zzzyzz"], [1, "zzyz"]],
[[1, "zzyzyyyyz"], [1, "zyzyyyy"], [1, "yzzzyzy"], [1, "zzzyyyz"], [1, "yzyyz"], [1, "zzyyy"], [1, "zzyzz"], [1, "zyz"]],
[[1, "x"], [1, "yz"]]]
-------------------------------
Note the following information printed by the server shows it is a partial Groebner basis.
===== 25th Loop =====
Number of elements in (partial) Groebner basis G: 19 -- partial Groebner basis before being interreduced
Number of S-elements: 25/113 -- 25 S-elements have been check, and 113 unchecked S-elements
|