up previous next
NC.MRMinimalPolynomials

Computes the minimal polynomials of a quotient ring element over a monoid ring.
Syntax
          
NC.MRMinimalPolynomials(X:STRING, R:LIST, F:LIST, P:LIST):LIST
NC.MRMinimalPolynomials(X:STRING, R:LIST, F:LIST, P:LIST, DegreeBound:INT, LoopBound:INT, BFlag:BOOL):LIST

          

Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them. Please note all of the following 3 additional optional parameters must be used at the same time if used.

Example
X := "xy"; 
R := []; 
F1 := [[1,""], [1,"y"]]; 
F2 := [[1,"xx"],[1,"xy"],[1,""]]; 
F := [F1, F2]; 
P := [[1,"yx"],[1,""]]; 
NC.MRMinimalPolynomials(X, R, F, P);
[[[1, "tt"], [-1, "t"], [1, ""]]]
-------------------------------
X := "xyz";    
Ordering := "LLEX";    
R := [];    
F1 := [[1,"xx"], [1,""]];    
F2 := [[1,"yyy"], [1,""]];   
F3 := [[1,"zz"], [1,""]];   
F4 := [[1,"xyxyyxyxyy"], [1,""]];  
F5 := [[1,"xzxz"], [1,""]];   
F6 := [[1,"yzyz"], [1,""]];    
F := [F1, F2, F3, F4, F5, F6]; 
NC.MRMinimalPolynomials(X, R, F, [[1,"x"]]);
[[[1, "tt"], [1, ""]]]
-------------------------------


See Also