-- An example of zero dimensional Non-Homogeneous Solving.
-- We want to solve zero dimensional non-homogeneous system x^2+y^2-5=0, xy-2=0.
Use S ::= QQ[x,y];
P := [x^2+y^2-5, xy-2];
SysTyp := "Nhom";
-- Then we compute the solution with
Bertini.BSolve(P,SysTyp);
-- And we achieve a list of lists containing all finite solutions.
----------------------------------------
[
[
Vector(400000000000003/200000000000000, -3416759775755413/500000000000000000000000000000),
Vector(9999999999999927/10000000000000000, 8966048861359829/1000000000000000000000000000000)
],
[
Vector(2499999999999963/2500000000000000, 5007041073746771/100000000000000000000000000000),
Vector(249999999999999/125000000000000, -1089183184148021/25000000000000000000000000000)
],
[
Vector(-9999999999999969/10000000000000000, 191792591213411/125000000000000000000000000000),
Vector(-1999999999999999/1000000000000000, 2443331461729629/2500000000000000000000000000000)
],
[
Vector(-250000000000001/125000000000000, 4347064 850996171/1000000000000000000000000000000),
Vector(-9999999999999943/10000000000000000, -2154842536286333/500000000000000000000000000000)
]
]
--The elements of lists are vectors. Each vector represents a complex number. For example Vector(5000/1000,-4150/1000)
--represents the complex number 5000/1000-4150/1000i.
--For Bertini output files please refer to ApCoCoA directory/Bertini.
|