CharP.MBBasis |
Syntax |
CharP.MBBasisF2(F:LIST):LIST CharP.MBBasisF2(F:LIST, NSol: INT):LIST |
Description |
Example |
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; -- Then we compute a Border Basis with CharP.MBBasisF2(F); The size of Matrix is: No. of Rows=4 No. of Columns=11 The size of Matrix is: No. of Rows=8 No. of Columns=11 No. of mutants found =1 The size of Matrix is: No. of Rows=11 No. of Columns=11 No. of mutants found =2 The size of Matrix is: No. of Rows=16 No. of Columns=11 No. of mutants found =0 The size of Matrix is: No. of Rows=31 No. of Columns=15 No. of mutants found =0 [x[4] + 1, x[3], x[2] + 1, x[1]] |
Example |
Use Z/(2)[x[1..4]]; F:=[ x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2] ]; NSol:=3; -- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions -- Compute the solution with CharP.MBBasisF2(F,NSol); The size of Matrix is: No. of Rows=4 No. of Columns=9 The size of Matrix is: No. of Rows=14 No. of Columns=14 The size of Matrix is: No. of Rows=16 No. of Columns=15 [x[3]x[4] + x[4], x[1]x[4] + x[1], x[1]x[3] + x[1], x[1]x[2] + x[1], x[2]x[3]x[4] + x[4], x[1]x[2]x[4] + x[1]] |
See Also |