GLPK.RPCSolve |
Syntax |
GLPK.RPCSolve(F:LIST, QStrategy:INT, CStrategy:INT, MinMax:STRING):LIST |
Description |
Example |
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; QStrategy:=0; CStrategy:=0; MinMax:="Max"; -- Then we compute the solution with GLPK.RPCSolve(F, QStrategy, CStrategy, MinMax); -- The result will be the following: Modelling the system as a mixed integer programming problem. QStrategy: Standard, CStrategy: Standard. Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 2 [0, 1, 0, 1] ------------------------------- |
Example |
Use S::=Z/(2)[x[1..5]]; F:=[ x[1]x[5] + x[3]x[5] + x[4]x[5] + x[1] + x[4], x[1]x[2] + x[1]x[4] + x[3]x[4] + x[1]x[5] + x[2]x[5] + x[3]x[5] + x[1] + x[4] + x[5] + 1, x[1]x[2] + x[4]x[5] + x[1] + x[2] + x[4], x[1]x[4] + x[3]x[4] + x[2]x[5] + x[1] + x[2] + x[4] + x[5] + 1, x[1]x[4] + x[2]x[4] + x[3]x[4] + x[2]x[5] + x[4]x[5] + x[1] + x[2] + x[4] + x[5] ]; QStrategy:=1; CStrategy:=0; MinMax:="Max"; -- Then we compute the solution with GLPK.RPCSolve(F, QStrategy, CStrategy, MinMax); -- The result will be the following: Modelling the system as a mixed integer programming problem. QStrategy: LinearPartner, CStrategy: Standard. Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 4 [1, 1, 1, 1, 0] ------------------------------- |
Example |
Use ZZ/(2)[x[1..3]]; F := [ x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[3] +1, x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[2], x[1]x[2] + x[2]x[3] + x[2] ]; QStrategy:=0; CStrategy:=1; MinMax:="Max"; -- Then we compute the solution with GLPK.RPCSolve(F, QStrategy, CStrategy, MinMax); -- The result will be the following: Modelling the system as a mixed integer programming problem. QStrategy: Standard, CStrategy: CubicParnterDegree2. Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 1 [0, 0, 1] ------------------------------- |