up previous next
BBSGen.BBFinder

Let LF be a list of indeterminates from the ring K[t[k,l,i,j] that is the subset of the ring XX:=K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]] . This function finds the defining equations of border basis scheme and their degrees that correspond to the elements of the list LF.
Syntax
          

BBSGen.BBFinder(LF,OO,N,Poly); 
BBSGen.BBFinder(LF:LIST,OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST

          

Description
In order to use this function, one should define the ring XX as given in the example. This function may not work properly for bigger order ideals and rings with more than three indeterminates, since the indeterminates of the ring XX also grows rapidly with respect to them.

Example


Use R::=QQ[x[1..2]];

OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=$apcocoa/borderbasis.Border(OO);   
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
W:=BBSGen.Wmat(OO,BO,N);

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

BBSGen.BBFinder([t[1,2,3,4],t[1,2,2,4]],OO,BO,N,W);

[ [   [   R :: Vector(1, 2)],
    [t[1,2,3,4]],
    [ -c[2,4]c[3,1] + c[3,2]c[3,3] + c[3,4]c[4,3] - c[3,3]c[4,4] + c[1,3]]],
  [[   R :: Vector(2, 1)],
    [  t[1,2,2,4]],
    [ -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4]]]]
    




See Also